NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wen Chiang Lim; Neil T. Heffernan; Adam Sales – Grantee Submission, 2025
As online learning platforms become more popular and deeply integrated into education, understanding their effectiveness and what drives that effectiveness becomes increasingly important. While there is extensive prior research illustrating the benefits of intelligent tutoring systems (ITS) for student learning, there is comparatively less focus…
Descriptors: Intelligent Tutoring Systems, Computer Uses in Education, Prompting, Reports
Peer reviewed Peer reviewed
Direct linkDirect link
Sonsoles Lopez-Pernas; Kamila Misiejuk; Rogers Kaliisa; Mohammed Saqr – IEEE Transactions on Learning Technologies, 2025
Despite the growing use of large language models (LLMs) in educational contexts, there is no evidence on how these can be operationalized by students to generate custom datasets suitable for teaching and learning. Moreover, in the context of network science, little is known about whether LLMs can replicate real-life network properties. This study…
Descriptors: Students, Artificial Intelligence, Man Machine Systems, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Bruce Parsons; John H. Curry – TechTrends: Linking Research and Practice to Improve Learning, 2024
This article investigates an artificial intelligence language model, ChatGPT, and its ability to complete graduate-level instructional design assignments. The approach subjected ChatGPT to a needs, task, and learner analysis for a 12th-grade media literacy module and benchmarked its performance by expert evaluation and measurements via grading…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Technology, Instructional Design
Peer reviewed Peer reviewed
Direct linkDirect link
Sonja Kleter; Uwe Matzat; Rianne Conijn – IEEE Transactions on Learning Technologies, 2024
Much of learning analytics research has focused on factors influencing model generalizability of predictive models for academic performance. The degree of model generalizability across courses may depend on aspects, such as the similarity of the course setup, course material, the student cohort, or the teacher. Which of these contextual factors…
Descriptors: Prediction, Models, Academic Achievement, Learning Analytics