NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Axel Langner; Lea Sophie Hain; Nicole Graulich – Journal of Chemical Education, 2025
Often, eye-tracking researchers define areas of interest (AOIs) to analyze eye-tracking data. Although AOIs can be defined with systematic methods, researchers in organic chemistry education eye-tracking research often define them manually, as the semantic composition of the stimulus must be considered. Still, defining appropriate AOIs during data…
Descriptors: Organic Chemistry, Science Education, Eye Movements, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Xue Wang; Gaoxiang Luo – Society for Research on Educational Effectiveness, 2024
Background: Despite the usefulness of systematic reviews and meta-analyses, they are time-consuming and labor-intensive (Michelson & Reuter, 2019). The technological advancements in recent years have led to the development of tools aimed at streamlining the processes of systematic reviews and meta-analyses. Innovations such as Paperfetcher…
Descriptors: Meta Analysis, Artificial Intelligence, Computational Linguistics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Stéphane Favier; Jean-Luc Dorier – Educational Studies in Mathematics, 2024
In this research, our objective is to characterize the problem-solving procedures of primary and lower secondary students when they solve problems in real class conditions. To do so, we rely first on the concept of heuristics. As this term is very polysemic, we exploit the definition proposed by Rott (2014) to develop a coding manual and thus…
Descriptors: Heuristics, Semantics, Student Evaluation, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Bingbing Yan; Chixiang Ma; Mingfei Wang; Ana Isabel Molina – International Journal of Web-Based Learning and Teaching Technologies, 2024
With the emergence of short video and the development of mobile internet, short video software, such as TikTok and Kwai, has emerged. Based on the semantic understanding technology of teaching short videos, a teaching management platform was built to push healthy and positive short video for students' content in a targeted way. Taking the 21st…
Descriptors: Video Technology, Semantics, Visual Aids, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics