NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Policymakers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 101 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wei Liu – International Journal of Research & Method in Education, 2024
Underlying thematic analysis are a few fundamental human cognitive processes, such as categorizing, prototyping and metaphorical mapping. By unpacking these basic processes of human cognition, this paper hopes to provide a cognitive basis for thematic analysis as a foundational method in data analysis for qualitative research. In particular, it…
Descriptors: Qualitative Research, Cognitive Processes, Classification, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Vahid Roshanaei; Bahman Naderi; Opher Baron; Dmitry Krass – INFORMS Transactions on Education, 2024
We present an interactive spreadsheet that supports teaching essential concepts in classification using the logistic regression (LoR) model for binary classification. The interactive spreadsheet demonstrates the capabilities of LoR by integrating computation with visualization. Students will reinforce concepts like probabilities, maximum…
Descriptors: Spreadsheets, Interaction, Classification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Nayoung; Oh, JungSu – Measurement and Evaluation in Counseling and Development, 2023
We investigated the effect of careless or insufficient effort (C/IE) responses in a study using Amazon's Mechanical Turk. A factor mixture model was used to identify latent classes based on the pattern of responses with biases and examine the effect of C/IE responses on the fit of the theoretical model.
Descriptors: Counseling, Research, Responses, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Khalemsky; Roy Gelbard; Yelena Stukalin – Journal of Statistics and Data Science Education, 2025
Classification, a fundamental data analytics task, has widespread applications across various academic disciplines, such as marketing, finance, sociology, psychology, education, and public health. Its versatility enables researchers to explore diverse research questions and extract valuable insights from data. Therefore, it is crucial to extend…
Descriptors: Classification, Undergraduate Students, Undergraduate Study, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Yagci, Mustafa – Smart Learning Environments, 2022
Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The…
Descriptors: Data Analysis, Academic Achievement, Prediction, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Joseph; Pollard, Benjamin; Aiken, John M.; Lewandowski, H. J. – Physical Review Physics Education Research, 2022
Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights…
Descriptors: Natural Language Processing, Science Education, Physics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Horton, Nicholas J.; Chao, Jie; Palmer, Phebe; Finzer, William – Teaching Statistics: An International Journal for Teachers, 2023
Text provides a compelling example of unstructured data that can be used to motivate and explore classification problems. Challenges arise regarding the representation of features of text and student linkage between text representations as character strings and identification of features that embed connections with underlying phenomena. In order…
Descriptors: Undergraduate Students, Data Analysis, Learning Processes, Written Language
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Lepori, Benedetto; Borden, Victor M. H.; Coates, Hamish – European Journal of Higher Education, 2022
This paper discusses empirical comparisons of higher education institutions across world regions. It argues that institutional data systems have the potential for complementing global comparisons promoted by rankings by providing sensible information on institutional size, budgets, staffing, enrolments and activity profiles. With this perspective…
Descriptors: Comparative Education, Reputation, Institutional Characteristics, Institutional Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Wonkyung Choi; Jun Jo; Geraldine Torrisi-Steele – International Journal of Adult Education and Technology, 2024
Despite best efforts, the student experience remains poorly understood. One under-explored approach to understanding the student experience is the use of big data analytics. The reported study is a work in progress aimed at exploring the value of big data methods for understanding the student experience. A big data analysis of an open dataset of…
Descriptors: College Students, Data Analysis, Data Collection, Learning Analytics
Blagg, Kristin; Blom, Erica; Kelchen, Robert; Chien, Carina – Urban Institute, 2021
Policymakers have expressed increased interest in program-level higher education accountability measures as a supplement to, or in place of, institution-level metrics. But it is unclear what these measures should look like. In this report, we assess the ways program-level data could be developed to facilitate federal accountability. Evidence shows…
Descriptors: Higher Education, Accountability, Program Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aydin, Gökhan; Duran, Volkan; Mertol, Hüseyin – International Journal of Curriculum and Instruction, 2021
This study aims to develop a computer program for the identification key to insect orders (Arthropoda: Hexapoda) and to investigate its effectiveness as teaching material. Secondly, this study is aiming at whether this program improves students' computational thinking skills or not longitudinal quasi-experimental design. Firstly, the study is…
Descriptors: Computer Software, Identification, Entomology, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7