NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Khalemsky; Roy Gelbard; Yelena Stukalin – Journal of Statistics and Data Science Education, 2025
Classification, a fundamental data analytics task, has widespread applications across various academic disciplines, such as marketing, finance, sociology, psychology, education, and public health. Its versatility enables researchers to explore diverse research questions and extract valuable insights from data. Therefore, it is crucial to extend…
Descriptors: Classification, Undergraduate Students, Undergraduate Study, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Nicole M. Dalzell; Ciaran Evans – Journal of Statistics and Data Science Education, 2023
Statistical competitions like ASA DataFest and the Women in Data Science (WiDS) Datathon give students valuable experience working with real, challenging data. By participating, students practice important statistics and data science skills including data wrangling, visualization, modeling, communication, and teamwork. However, while advanced…
Descriptors: Access to Education, Readiness, Statistics Education, Competition
Peer reviewed Peer reviewed
Direct linkDirect link
Tackett, Maria – Journal of Statistics and Data Science Education, 2023
As data have become more prevalent in academia, industry, and daily life, it is imperative that undergraduate students are equipped with the skills needed to analyze data in the modern environment. In recent years there has been a lot of work innovating introductory statistics courses and developing introductory data science courses; however,…
Descriptors: Educational Change, Undergraduate Students, Regression (Statistics), Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Dennis Tay – Journal of Statistics and Data Science Education, 2024
Data analytics and programming skills are increasingly important in the humanities, especially in disciplines like linguistics due to the rapid growth of natural language processing (NLP) technologies. However, attitudes and perceptions of students as novice learners, and the attendant pedagogical implications, remain underexplored. This article…
Descriptors: Data Analysis, Programming, Linguistics, Graduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, Benjamin; Kuemmel, Anja; Meule, Marianne; Muche, Rainer – Journal of Statistics and Data Science Education, 2023
Teaching practical skills is of particular interest in the study of human medicine. With regard to medical statistics this means the use of statistical software, which may be effectively taught by a flipped classroom approach. As a pilot study, we designed and implemented an elective course on medical statistics that focused on hands-on data…
Descriptors: Computer Software, Medicine, Statistics, Flipped Classroom
Peer reviewed Peer reviewed
Direct linkDirect link
Arnold, Pip; Franklin, Christine – Journal of Statistics and Data Science Education, 2021
The statistical problem-solving process is key to the statistics curriculum at the school level, post-secondary, and in statistical practice. The process has four main components: formulate questions, collect data, analyze data, and interpret results. The Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education (GAISE) emphasizes…
Descriptors: Statistics Education, Problem Solving, Data Collection, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Vance, Eric A. – Journal of Statistics and Data Science Education, 2021
Data science is collaborative and its students should learn teamwork and collaboration. Yet it can be a challenge to fit the teaching of such skills into the data science curriculum. Team-Based Learning (TBL) is a pedagogical strategy that can help educators teach data science better by flipping the classroom to employ small-group collaborative…
Descriptors: Cooperative Learning, Data Analysis, Statistics Education, Flipped Classroom
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Albert Y.; Hardin, Johanna – Journal of Statistics and Data Science Education, 2021
We provide a computational exercise suitable for early introduction in an undergraduate statistics or data science course that allows students to "play the whole game" of data science: performing both data collection and data analysis. While many teaching resources exist for data analysis, such resources are not as abundant for data…
Descriptors: Data Collection, Data Analysis, Statistics Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Weiland, Travis; Sundrani, Anita – Journal of Statistics and Data Science Education, 2022
Statistical literacy is key in this heavily polarized information age for an informed and critical citizenry to make sense of arguments in the media and society. The responsibility of developing statistical literacy is often left to the K-12 mathematics curriculum. In this article, we discuss our investigation of K-8 students' current…
Descriptors: Elementary School Students, Middle School Students, Statistics Education, Educational Opportunities
Peer reviewed Peer reviewed
Direct linkDirect link
Vilhuber, Lars; Son, Hyuk Harry; Welch, Meredith; Wasser, David N.; Darisse, Michael – Journal of Statistics and Data Science Education, 2022
We describe a unique environment in which undergraduate students from various STEM and social science disciplines are trained in data provenance and reproducible methods, and then apply that knowledge to real, conditionally accepted manuscripts and associated replication packages. We describe in detail the recruitment, training, and regular…
Descriptors: Statistics Education, Data Science, STEM Education, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Hoffman, Heather J.; Elmi, Angelo F. – Journal of Statistics and Data Science Education, 2021
Teaching students statistical programming languages while simultaneously teaching them how to debug erroneous code is challenging. The traditional programming course focuses on error-free learning in class while students' experiences outside of class typically involve error-full learning. While error-free teaching consists of focused lectures…
Descriptors: Statistics Education, Programming Languages, Troubleshooting, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, JaCoya; Arastoopour Irgens, Golnaz – Journal of Statistics and Data Science Education, 2022
Data science is a highly interdisciplinary field that comprises various principles, methodologies, and guidelines for the analysis of data. The creation of appropriate curricula that use computational tools and teaching activities is necessary for building skills and knowledge in data science. However, much of the literature about data science…
Descriptors: Data Analysis, Middle School Students, Statistics Education, Student Centered Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Zieffler, Andrew; Justice, Nicola; delMas, Robert; Huberty, Michael D. – Journal of Statistics and Data Science Education, 2021
Statistical modeling continues to gain prominence in the secondary curriculum, and recent recommendations to emphasize data science and computational thinking may soon position algorithmic models into the school curriculum. Many teachers' preparation for and experiences teaching statistical modeling have focused on probabilistic models.…
Descriptors: Mathematical Models, Thinking Skills, Teaching Methods, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Polak, Julia; Cook, Dianne – Journal of Statistics and Data Science Education, 2021
Kaggle is a data modeling competition service, where participants compete to build a model with lower predictive error than other participants. Several years ago they released a simplified service that is ideal for instructors to run competitions in a classroom setting. This article describes the results of an experiment to determine if…
Descriptors: Artificial Intelligence, Data Analysis, Models, Competition
Peer reviewed Peer reviewed
Direct linkDirect link
Schwab-McCoy, Aimee; Baker, Catherine M.; Gasper, Rebecca E. – Journal of Statistics and Data Science Education, 2021
In the past 10 years, new data science courses and programs have proliferated at the collegiate level. As faculty and administrators enter the race to provide data science training and attract new students, the road map for teaching data science remains elusive. In 2019, 69 college and university faculty teaching data science courses and…
Descriptors: Statistics Education, Higher Education, College Students, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2