Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 9 |
Descriptor
Source
Journal of Educational and… | 11 |
Author
Castellano, Katherine E. | 1 |
Chen, Jinsong | 1 |
Choi, Jaehwa | 1 |
Chung, Yeojin | 1 |
Dannels, Sharon | 1 |
Dorie, Vincent | 1 |
Gelman, Andrew | 1 |
Harring, Jeffrey R. | 1 |
Kim, Sunhee | 1 |
Leckie, George | 1 |
Lee, Daniel Y. | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 9 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 1 |
High Schools | 1 |
Audience
Location
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Choi, Jaehwa; Kim, Sunhee; Chen, Jinsong; Dannels, Sharon – Journal of Educational and Behavioral Statistics, 2011
The purpose of this study is to compare the maximum likelihood (ML) and Bayesian estimation methods for polychoric correlation (PCC) under diverse conditions using a Monte Carlo simulation. Two new Bayesian estimates, maximum a posteriori (MAP) and expected a posteriori (EAP), are compared to ML, the classic solution, to estimate PCC. Different…
Descriptors: Computation, Maximum Likelihood Statistics, Bayesian Statistics, Correlation
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Shin, Yongyun; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2010
In organizational studies involving multiple levels, the association between a covariate and an outcome often differs at different levels of aggregation, giving rise to widespread interest in "contextual effects models." Such models partition the regression into within- and between-cluster components. The conventional approach uses each…
Descriptors: Academic Achievement, National Surveys, Computation, Inferences

Thum, Yeow Meng – Journal of Educational and Behavioral Statistics, 1997
A class of two-stage models is developed to accommodate three common characteristics of behavioral data: (1) its multivariate nature; (2) the typical small sample size; and (3) the possibility of missing observations. The model, as illustrated, permits estimation of the full spectrum of plausible measurement error structures. (SLD)
Descriptors: Bayesian Statistics, Behavior Patterns, Estimation (Mathematics), Maximum Likelihood Statistics
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
Lee, Sik-Yum; Song, Xin-Yuan – Journal of Educational and Behavioral Statistics, 2005
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Descriptors: Mathematics, Sampling, Structural Equation Models, Bayesian Statistics