Publication Date
In 2025 | 2 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
Structural Equation Modeling:… | 8 |
Author
Bang Quan Zheng | 1 |
Bentler, Peter M. | 1 |
Daniel McNeish | 1 |
Haiyan Liu | 1 |
Hao Wu | 1 |
Jonas Moss | 1 |
Keke Lai | 1 |
Melissa G. Wolf | 1 |
Naoto Yamashita | 1 |
Njål Foldnes | 1 |
Peter M. Bentler | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 7 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Naoto Yamashita – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Matrix decomposition structural equation modeling (MDSEM) is introduced as a novel approach in structural equation modeling, contrasting with traditional structural equation modeling (SEM). MDSEM approximates the data matrix using a model generated by the hypothetical model and addresses limitations faced by conventional SEM procedures by…
Descriptors: Structural Equation Models, Factor Structure, Robustness (Statistics), Matrices
Keke Lai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
When a researcher proposes an SEM model to explain the dynamics among some latent variables, the real question in model evaluation is the fit of the model's structural part. A composite index that lumps the fit of the structural part and measurement part does not directly address that question. The need for more attention to structural-level fit…
Descriptors: Goodness of Fit, Structural Equation Models, Statistics, Statistical Distributions
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Sarah Depaoli; Sonja D. Winter; Haiyan Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We extended current knowledge by examining the performance of several Bayesian model fit and comparison indices through a simulation study using the confirmatory factor analysis. Our goal was to determine whether commonly implemented Bayesian indices can detect specification errors. Specifically, we wanted to uncover any differences in detecting…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Testing, Evaluation Utilization
Xijuan Zhang; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A full structural equation model (SEM) typically consists of both a measurement model (describing relationships between latent variables and observed scale items) and a structural model (describing relationships among latent variables). However, often researchers are primarily interested in testing hypotheses related to the structural model while…
Descriptors: Structural Equation Models, Goodness of Fit, Robustness (Statistics), Factor Structure
Daniel McNeish; Melissa G. Wolf – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Despite the popularity of traditional fit index cutoffs like RMSEA [less than or equal to] 0.06 and CFI [greater than or equal to] 0.95, several studies have noted issues with overgeneralizing traditional cutoffs. Computational methods have been proposed to avoid overgeneralization by deriving cutoffs specifically tailored to the characteristics…
Descriptors: Structural Equation Models, Cutting Scores, Generalizability Theory, Error of Measurement
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This paper aims to advocate for a balanced approach to model fit evaluation in structural equation modeling (SEM). The ongoing debate surrounding chi-square test statistics and fit indices has been characterized by ambiguity and controversy. Despite the acknowledged limitations of relying solely on the chi-square test, its careful application can…
Descriptors: Monte Carlo Methods, Structural Equation Models, Goodness of Fit, Robustness (Statistics)
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size