Publication Date
In 2025 | 8 |
Since 2024 | 26 |
Since 2021 (last 5 years) | 79 |
Since 2016 (last 10 years) | 135 |
Since 2006 (last 20 years) | 276 |
Descriptor
Academic Achievement | 304 |
Prediction | 304 |
Models | 214 |
Foreign Countries | 95 |
Correlation | 78 |
Structural Equation Models | 77 |
College Students | 57 |
Student Attitudes | 50 |
Artificial Intelligence | 39 |
Data Analysis | 37 |
Longitudinal Studies | 36 |
More ▼ |
Source
Author
Marsh, Herbert W. | 6 |
Martin, Andrew J. | 5 |
Nagengast, Benjamin | 4 |
Collazo, Andres | 3 |
Goldhaber, Dan | 3 |
Liem, Gregory Arief D. | 3 |
Lipscomb, Stephen | 3 |
Phan, Huy P. | 3 |
Prinsloo, Paul | 3 |
Archer, Elizabeth | 2 |
Aunola, Kaisa | 2 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 2 |
Researchers | 2 |
Location
Australia | 11 |
Germany | 11 |
China | 10 |
North Carolina | 9 |
Pennsylvania | 7 |
Turkey | 7 |
United States | 7 |
Florida | 6 |
Hong Kong | 6 |
California | 5 |
Italy | 5 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 3 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |
Tong Zhang; Ermei Lu; Quanming Liao; Deliang Sun – Journal of Psychoeducational Assessment, 2025
Purpose: Academic anxiety is a common phenomenon in the college student population, which has an important impact on students' psychological health and academic performance. Therefore, by exploring the effects of college students' professional commitment and achievement goal orientation variables on academic anxiety, it helps to understand…
Descriptors: College Students, Anxiety, Academic Achievement, Student Attitudes
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Hoq, Muntasir; Brusilovsky, Peter; Akram, Bita – International Educational Data Mining Society, 2023
Prediction of student performance in introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help…
Descriptors: Academic Achievement, Prediction, Models, Introductory Courses
Murata, Ryusuke; Okubo, Fumiya; Minematsu, Tsubasa; Taniguchi, Yuta; Shimada, Atsushi – Journal of Educational Computing Research, 2023
This study helps improve the early prediction of student performance by RNN-FitNets, which applies knowledge distillation (KD) to the time series direction of the recurrent neural network (RNN) model. The RNN-FitNets replaces the teacher model in KD with "an RNN model with a long-term time-series in which the features during the entire course…
Descriptors: College Students, Academic Achievement, Prediction, Neurology
Delianidi, Marina; Diamantaras, Konstantinos – Journal of Educational Data Mining, 2023
Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a suitable approach for student performance prediction. We propose such a neural network architecture containing two modules: (i) a…
Descriptors: Academic Achievement, Prediction, Cognitive Measurement, Bayesian Statistics
Smithers, Laura – Learning, Media and Technology, 2023
This article examines the work of predictive analytics in shaping the social worlds in which they thrive, and in particular the world of the first year of Great State University's student success initiative. Specifically, this article investigates the following research paradox: predictive analytics, as driven by a logic premised on predicting the…
Descriptors: Prediction, Learning Analytics, Academic Achievement, College Students
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Forthmann, Boris; Förster, Natalie; Souvignier, Elmar – Journal of Intelligence, 2022
Monitoring the progress of student learning is an important part of teachers' data-based decision making. One such tool that can equip teachers with information about students' learning progress throughout the school year and thus facilitate monitoring and instructional decision making is learning progress assessments. In practical contexts and…
Descriptors: Learning Processes, Progress Monitoring, Robustness (Statistics), Bayesian Statistics
Xiaojing Duan; Bo Pei; G. Alex Ambrose; Arnon Hershkovitz; Ying Cheng; Chaoli Wang – Education and Information Technologies, 2024
Providing educators with understandable, actionable, and trustworthy insights drawn from large-scope heterogeneous learning data is of paramount importance in achieving the full potential of artificial intelligence (AI) in educational settings. Explainable AI (XAI)--contrary to the traditional "black-box" approach--helps fulfilling this…
Descriptors: Academic Achievement, Artificial Intelligence, Prediction, Models
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Meriem Zerkouk; Miloud Mihoubi; Belkacem Chikhaoui; Shengrui Wang – Education and Information Technologies, 2024
School dropout is a significant issue in distance learning, and early detection is crucial for addressing the problem. Our study aims to create a binary classification model that anticipates students' activity levels based on their current achievements and engagement on a Canadian Distance learning Platform. Predicting student dropout, a common…
Descriptors: Artificial Intelligence, Dropouts, Prediction, Distance Education
Badal, Yudish Teshal; Sungkur, Roopesh Kevin – Education and Information Technologies, 2023
The outbreak of COVID-19 has caused significant disruption in all sectors and industries around the world. To tackle the spread of the novel coronavirus, the learning process and the modes of delivery had to be altered. Most courses are delivered traditionally with face-to-face or a blended approach through online learning platforms. In addition,…
Descriptors: Prediction, Models, Learning Analytics, Grades (Scholastic)