NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yu Bai; Jun Li; Jun Shen; Liang Zhao – IEEE Transactions on Learning Technologies, 2024
The potential of artificial intelligence (AI) in transforming education has received considerable attention. This study aims to explore the potential of large language models (LLMs) in assisting students with studying and passing standardized exams, while many people think it is a hype situation. Using primary education as an example, this…
Descriptors: Instructional Effectiveness, Artificial Intelligence, Technology Uses in Education, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Ghadeer Sawalha; Imran Taj; Abdulhadi Shoufan – Cogent Education, 2024
Large language models present new opportunities for teaching and learning. The response accuracy of these models, however, is believed to depend on the prompt quality which can be a challenge for students. In this study, we aimed to explore how undergraduate students use ChatGPT for problem-solving, what prompting strategies they develop, the link…
Descriptors: Cues, Artificial Intelligence, Natural Language Processing, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ted M. Clark; Ellie Anderson; Nicole M. Dickson-Karn; Comelia Soltanirad; Nicolas Tafini – Journal of Chemical Education, 2023
Student performance on open-response calculations involving acid and base solutions before and after instruction in general chemistry and analytical chemistry courses was compared with the output from the artificial intelligence chatbot ChatGPT. Applying a theoretical model of expertise for problem solving that includes problem conceptualization,…
Descriptors: Academic Achievement, College Students, College Science, Chemistry
Crossley, Scott; McNamara, Danielle S.; Baker, Ryan; Wang, Yuan; Paquette, Luc; Barnes, Tiffany; Bergner, Yoav – International Educational Data Mining Society, 2015
Completion rates for massive open online classes (MOOCs) are notoriously low, but learner intent is an important factor. By studying students who drop out despite their intent to complete the MOOC, it may be possible to develop interventions to improve retention and learning outcomes. Previous research into predicting MOOC completion has focused…
Descriptors: Online Courses, Large Group Instruction, Information Retrieval, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals