Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 14 |
Since 2016 (last 10 years) | 35 |
Since 2006 (last 20 years) | 67 |
Descriptor
Bayesian Statistics | 90 |
Educational Research | 90 |
Research Methodology | 22 |
Models | 20 |
Statistical Analysis | 20 |
Data Analysis | 17 |
Regression (Statistics) | 15 |
Foreign Countries | 14 |
Probability | 13 |
Comparative Analysis | 12 |
Computation | 12 |
More ▼ |
Source
Author
Booker, Kevin | 3 |
Chojnacki, Gregory | 3 |
Coen, Thomas | 3 |
Gleason, Philip | 3 |
Goble, Lisbeth | 3 |
Knechtel, Virginia | 3 |
Nichols-Barrer, Ira | 3 |
Tuttle, Christina Clark | 3 |
Barnes, Tiffany, Ed. | 2 |
Belland, Brian R. | 2 |
Chung, Yeojin | 2 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 2 |
Location
United Kingdom (England) | 4 |
Australia | 3 |
Netherlands | 2 |
United States | 2 |
China | 1 |
Colombia | 1 |
Czech Republic | 1 |
Germany | 1 |
Israel | 1 |
Massachusetts | 1 |
Morocco | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
Defining Issues Test | 1 |
Massachusetts Comprehensive… | 1 |
National Assessment of… | 1 |
National Household Education… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
John Deke; Mariel Finucane; Dan Thal – Society for Research on Educational Effectiveness, 2022
Background/Context: Methodological background: Meta-analysis typically depends on the assumption that true effects follow the normal distribution. While assuming normality of effect "estimates" is often supported by a central limit theorem, normality for the distribution of interventions' "true" effects is a computational…
Descriptors: Bayesian Statistics, Meta Analysis, Regression (Statistics), Research Design
Betsy Wolf – Society for Research on Educational Effectiveness, 2021
The What Works Clearinghouse (WWC) seeks to provide practitioners information about "what works in education." One challenge in understanding "what works" to practitioners is that effect sizes--the degree to which an intervention produces positive (or negative) outcomes--are not comparable across different interventions, in…
Descriptors: Effect Size, Outcome Measures, Intervention, Educational Research
W. Jake Thompson – Grantee Submission, 2023
In educational and psychological research, we are often interested in discrete latent states of individuals responding to an assessment (e.g., proficiency or non-proficiency on educational standards, the presence or absence of a psychological disorder). Diagnostic classification models (DCMs; also called cognitive diagnostic models [CDMs]) are a…
Descriptors: Bayesian Statistics, Measurement, Psychometrics, Educational Research
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Kasim, Adetayo – International Journal of Research & Method in Education, 2021
Educational researchers advocate the use of an effect size and its confidence interval to assess the effectiveness of interventions instead of relying on a p-value, which has been blamed for lack of reproducibility of research findings and the misuse of statistics. The aim of this study is to provide a framework, which can provide direct evidence…
Descriptors: Educational Research, Randomized Controlled Trials, Bayesian Statistics, Effect Size
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Lazrig, Ibrahim; Humpherys, Sean L. – Information Systems Education Journal, 2022
Can sentiment analysis be used in an educational context to help teachers and researchers evaluate students' learning experiences? Are sentiment analyzing algorithms accurate enough to replace multiple human raters in educational research? A dataset of 333 students evaluating a learning experience was acquired with positive, negative, and neutral…
Descriptors: College Students, Learning Analytics, Educational Research, Learning Experience
How, Meng-Leong; Hung, Wei Loong David – Education Sciences, 2019
Educational stakeholders would be better informed if they could use their students' formative assessments results and personal background attributes to predict the conditions for achieving favorable learning outcomes, and conversely, to gain awareness of the "at-risk" signals to prevent unfavorable or worst-case scenarios from happening.…
Descriptors: Artificial Intelligence, Bayesian Statistics, Models, Data Use
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Orona, Gabe A. – Arts and Humanities in Higher Education: An International Journal of Theory, Research and Practice, 2021
In recent decades, philosophy has been identified as a general approach to enhance the maturity of higher education as a field of study by enriching theory and method. In this article, I offer a new set of philosophical recommendations to spur the disciplinary development of higher education, departing from previous work in several meaningful…
Descriptors: Higher Education, Educational Philosophy, Educational Theories, Student Centered Curriculum
Lortie-Forgues, Hugues; Inglis, Matthew – Educational Researcher, 2019
In this response, we first show that Simpson's proposed analysis answers a different and less interesting question than ours. We then justify the choice of prior for our Bayes factors calculations, but we also demonstrate that the substantive conclusions of our article are not substantially affected by varying this choice.
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Educational Research, Program Evaluation
Kubsch, Marcus; Stamer, Insa; Steiner, Mara; Neumann, Knut; Parchmann, Ilka – Practical Assessment, Research & Evaluation, 2021
In light of the replication crisis in psychology, null-hypothesis significance testing (NHST) and "p"-values have been heavily criticized and various alternatives have been proposed, ranging from slight modifications of the current paradigm to banning "p"-values from journals. Since the physics education research community…
Descriptors: Data Analysis, Bayesian Statistics, Educational Research, Science Education