NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Zhan, Chen; Li, Jiuyong; Liu, Jixue; Liu, Lin; Duy Le, Thuc – British Journal of Educational Technology, 2022
With the widespread use of learning analytics (LA), ethical concerns about fairness have been raised. Research shows that LA models may be biased against students of certain demographic subgroups. Although fairness has gained significant attention in the broader machine learning (ML) community in the last decade, it is only recently that attention…
Descriptors: Ethics, Learning Analytics, Social Bias, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Perrotta, Carlo – Research in Education, 2021
This article offers a case study of how platforms and predictive infrastructures are emerging in higher education. It examines a Learning Analytics Application Programming Interface (API) from a popular Learning Management System. The API is treated firstly as an artefact based on the computational abstraction of educational principles, and…
Descriptors: Learning Analytics, Programming, Programming Languages, Computer Interfaces
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mitra, Reshmi; Schwieger, Dana; Lowe, Robert – Information Systems Education Journal, 2023
Many universities have, or are facing, the task of providing high quality essential customer services with fewer financial and human resources. The growing diversity of students, their needs and proficiencies, along with the increasing variety of university program offerings, make providing customized, ondemand, automated solutions crucial to…
Descriptors: Universities, Academic Advising, Artificial Intelligence, Faculty Workload
Peer reviewed Peer reviewed
Direct linkDirect link
Jaramillo-Morillo, Daniel; Ruipérez-Valiente, José A.; Burbano Astaiza, Claudia Patricia; Solarte, Mario; Ramirez-Gonzalez, Gustavo; Alexandron, Giora – Journal of Computer Assisted Learning, 2022
Background: Small private online courses (SPOCs) are one of the strategies to introduce the massive open online courses (MOOCs) within the university environment and to have these courses validates for academic credit. However, numerous researchers have highlighted that academic dishonesty is greatly facilitated by the online context in which…
Descriptors: Learning Analytics, Cheating, Integrated Learning Systems, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chinsook, Kittipong; Khajonmote, Withamon; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jantakoon, Thada – Higher Education Studies, 2022
Big data is an important part of innovation that has recently attracted a lot of interest from academics and practitioners alike. Given the importance of the education industry, there is a growing trend to investigate the role of big data in this field. Much research has been undertaken to date in order to better understand the use of big data in…
Descriptors: Student Behavior, Learning Analytics, Computer Software, Rating Scales
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khan, Md Akib Zabed; Polyzou, Agoritsa – International Educational Data Mining Society, 2023
Academic advising plays an important role in students' decision-making in higher education. Data-driven methods provide useful recommendations to students to help them with degree completion. Several course recommendation models have been proposed in the literature to recommend courses for the next semester. One aspect of the data that has yet to…
Descriptors: Course Selection (Students), Learning Analytics, Academic Advising, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis