NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Rui; Keller, Bryan Sean – AERA Online Paper Repository, 2019
When estimating an average treatment effect with observational data, it's possible to get an unbiased estimate of the causal effect if all confounding variables are observed and reliably measured. In education, confounding variables are often latent constructs. Covariate selection methods used in causal inference applications assume that all…
Descriptors: Factor Analysis, Predictor Variables, Monte Carlo Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eun Sook; Nguyen, Diep Thi; Pham, Thanh Vinh; Chen, Yi-Hsin; Yi, Zhiyao – AERA Online Paper Repository, 2017
The analysis of variance (ANOVA) F test is a commonly used method to test the mean equality among two or more populations. A critical assumption of ANOVA is homogeneity of variance (HOV), that is, the compared groups have equal variances. Although it is encouraged to test HOV as part of the regular ANOVA procedure, the efficacy of the initial HOV…
Descriptors: Statistical Analysis, Error of Measurement, Robustness (Statistics), Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Reeger, Adam; Gaasedelen, Owen; Welch, Catherine; Dunbar, Stephen – AERA Online Paper Repository, 2016
Student Growth Percentiles (SGPs) are increasingly being used in evaluations of teacher effectiveness. This study investigates two properties of SGPs: 1) SGP sensitivity to reference group characteristics such as sample size, free and reduced lunch (FRL) status, and English language learner (ELL) status; and 2) variation in score changes across…
Descriptors: Teacher Effectiveness, Teacher Evaluation, Accountability, Sample Size