Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 13 |
Descriptor
Instructional Effectiveness | 16 |
Intelligent Tutoring Systems | 16 |
Natural Language Processing | 16 |
Teaching Methods | 6 |
Artificial Intelligence | 5 |
Computer Software | 5 |
Computer Mediated… | 4 |
Dialogs (Language) | 4 |
Educational Technology | 4 |
Feedback (Response) | 4 |
Instructional Design | 4 |
More ▼ |
Source
Author
Graesser, Arthur C. | 2 |
VanLehn, Kurt | 2 |
Afzal, Shazia | 1 |
Bratt, Elizabeth Owen | 1 |
Britt, M. Anne | 1 |
Campbell, Gwendolyn | 1 |
Chi, Min | 1 |
Clark, Brady | 1 |
Crockett, Keeley | 1 |
Cui, Jialin | 1 |
D'Helon, Cassius | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 10 |
Reports - Evaluative | 4 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 3 |
Elementary Education | 2 |
Adult Education | 1 |
Elementary Secondary Education | 1 |
Audience
Administrators | 1 |
Location
New Zealand | 2 |
China | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Partners in Learning | 1 |
What Works Clearinghouse Rating
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – International Educational Data Mining Society, 2022
Providing timely feedback is crucial in promoting academic achievement and student success. However, for multifarious reasons (e.g., limited teaching resources), feedback often arrives too late for learners to act on the feedback and improve learning. Thus, automated feedback systems have emerged to tackle educational tasks in various domains,…
Descriptors: Student Projects, Feedback (Response), Natural Language Processing, Guidelines
Dawar, Deepak – Information Systems Education Journal, 2022
Learning computer programming is a challenging task for most beginners. Demotivation and learned helplessness are pretty common. A novel instructional technique that leverages the value-expectancy motivational model of student learning was conceptualized by the author to counter the lack of motivation in the introductory class. The result was a…
Descriptors: Teaching Methods, Introductory Courses, Computer Science Education, Assignments
Perikos, Isidoros; Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis – International Journal of Artificial Intelligence in Education, 2017
Logic as a knowledge representation and reasoning language is a fundamental topic of an Artificial Intelligence (AI) course and includes a number of sub-topics. One of them, which brings difficulties to students to deal with, is converting natural language (NL) sentences into first-order logic (FOL) formulas. To assist students to overcome those…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Natural Language Processing, Logical Thinking
Timpe-Laughlin, Veronika; Sydorenko, Tetyana; Daurio, Phoebe – Computer Assisted Language Learning, 2022
Often, second/foreign (L2) language learners receive little opportunity to interact orally in the target language. Interactive, conversation-based spoken dialog systems (SDSs) that use automated speech recognition and natural language processing have the potential to address this need by engaging learners in meaningful, goal-oriented speaking…
Descriptors: Second Language Learning, Second Language Instruction, Oral Language, Dialogs (Language)
Afzal, Shazia; Dempsey, Bryan; D'Helon, Cassius; Mukhi, Nirmal; Pribic, Milena; Sickler, Aaron; Strong, Peggy; Vanchiswar, Mira; Wilde, Lorin – Childhood Education, 2019
As artificially intelligent systems make their foray into the day-to-day educational experiences of students, we need to pay careful attention to the relationship between the system and the student. In this article, the authors discuss designing the personality of a virtual tutoring system called IBM Watson Tutor. The AI personality is key to the…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Instructional Design, Learner Engagement
Huang, Tao; Liang, Mengyi; Yang, Huali; Li, Zhi; Yu, Tao; Hu, Shengze – International Educational Data Mining Society, 2021
Influenced by COVID-19, online learning has become one of the most important forms of education in the world. In the era of intelligent education, knowledge tracing (KT) can provide excellent technical support for individualized teaching. For online learning, we come up with a new knowledge tracing method that integrates mathematical exercise…
Descriptors: Mathematics Instruction, Teaching Methods, Online Courses, Distance Education
Graesser, Arthur C.; Forsyth, Carol M.; Lehman, Blair A. – Grantee Submission, 2017
Background: Pedagogical agents are computerized talking heads or embodied animated avatars that help students learn by performing actions and holding conversations with the students in natural language. Dialogues occur between a tutor agent and the student in the case of AutoTutor and other intelligent tutoring systems with natural language…
Descriptors: Intelligent Tutoring Systems, Computer Managed Instruction, Natural Language Processing, Instructional Design
Dzikovska, Myroslava; Steinhauser, Natalie; Farrow, Elaine; Moore, Johanna; Campbell, Gwendolyn – International Journal of Artificial Intelligence in Education, 2014
Within STEM domains, physics is considered to be one of the most difficult topics to master, in part because many of the underlying principles are counter-intuitive. Effective teaching methods rely on engaging the student in active experimentation and encouraging deep reasoning, often through the use of self-explanation. Supporting such…
Descriptors: Intelligent Tutoring Systems, Electronics, Energy, Science Instruction
Kopp, Kristopher J.; Britt, M. Anne; Millis, Keith; Graesser, Arthur C. – Learning and Instruction, 2012
The current studies investigated the efficient use of dialogue in intelligent tutoring systems that use natural language interaction. Such dialogues can be relatively time-consuming. This work addresses the question of how much dialogue is needed to produce significant learning gains. In Experiment 1, a full dialogue condition and a read-only…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Mediated Communication, Synchronous Communication
Latham, Annabel; Crockett, Keeley; McLean, David; Edmonds, Bruce – Computers & Education, 2012
This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student's learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and…
Descriptors: Cognitive Style, Teaching Methods, Cognitive Measurement, Prediction
Chi, Min; VanLehn, Kurt; Litman, Diane; Jordan, Pamela – International Journal of Artificial Intelligence in Education, 2011
Pedagogical strategies are policies for a tutor to decide the next action when there are multiple actions available. When the content is controlled to be the same across experimental conditions, there has been little evidence that tutorial decisions have an impact on students' learning. In this paper, we applied Reinforcement Learning (RL) to…
Descriptors: Classroom Communication, Interaction, Reinforcement, Natural Language Processing
Vlugter, P.; Knott, A.; McDonald, J.; Hall, C. – Computer Assisted Language Learning, 2009
We describe a computer assisted language learning (CALL) system that uses human-machine dialogue as its medium of interaction. The system was developed to help students learn the basics of the Maori language and was designed to accompany the introductory course in Maori running at the University of Otago. The student engages in a task-based…
Descriptors: College Students, Introductory Courses, Malayo Polynesian Languages, Pretests Posttests
Janson, Annick; Janson, Robin – Innovate: Journal of Online Education, 2009
In this article, Annick Janson and Robin Janson introduce research from the Microsoft New Zealand's Partners in Learning Programme by documenting the impact of digital learning objects (DLOs) on educational practice. Janson and Janson describe the impact of DLOs on the teaching practice of a primary school in New Zealand, tracing the effects of…
Descriptors: Educational Practices, Foreign Countries, Instructional Leadership, Principals
Lane, H. Chad; VanLehn, Kurt – Computer Science Education, 2005
For beginning programmers, inadequate problem solving and planning skills are among the most salient of their weaknesses. In this paper, we test the efficacy of natural language tutoring to teach and scaffold acquisition of these skills. We describe ProPL (Pro-PELL), a dialogue-based intelligent tutoring system that elicits goal decompositions and…
Descriptors: Control Groups, Intelligent Tutoring Systems, Programming, Natural Language Processing
Michael, Joel; Rovick, Allen; Glass, Michael; Zhou, Yujian; Evens, Martha – Interactive Learning Environments, 2003
CIRCSIM-Tutor is a computer tutor designed to carry out a natural language dialogue with a medical student. Its domain is the baroreceptor reflex, the part of the cardiovascular system that is responsible for maintaining a constant blood pressure. CIRCSIM-Tutor's interaction with students is modeled after the tutoring behavior of two experienced…
Descriptors: Natural Language Processing, Medical Students, Computer Mediated Communication, Artificial Intelligence
Previous Page | Next Page ยป
Pages: 1 | 2