NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 65 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Guo, Wenjing; Choi, Youn-Jeng – Educational and Psychological Measurement, 2023
Determining the number of dimensions is extremely important in applying item response theory (IRT) models to data. Traditional and revised parallel analyses have been proposed within the factor analysis framework, and both have shown some promise in assessing dimensionality. However, their performance in the IRT framework has not been…
Descriptors: Item Response Theory, Evaluation Methods, Factor Analysis, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Chenchen Ma; Jing Ouyang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Survey instruments and assessments are frequently used in many domains of social science. When the constructs that these assessments try to measure become multifaceted, multidimensional item response theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration, and scoring. However, the computational…
Descriptors: Algorithms, Item Response Theory, Scoring, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Lin, Zhongtian; Chalmers, Robert Philip – Educational and Psychological Measurement, 2023
To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori…
Descriptors: Models, Item Response Theory, Test Items, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Ying; Shao, Can – Educational and Psychological Measurement, 2022
Computer-based and web-based testing have become increasingly popular in recent years. Their popularity has dramatically expanded the availability of response time data. Compared to the conventional item response data that are often dichotomous or polytomous, response time has the advantage of being continuous and can be collected in an…
Descriptors: Reaction Time, Test Wiseness, Computer Assisted Testing, Simulation
Xue Zhang; Chun Wang – Grantee Submission, 2022
Item-level fit analysis not only serves as a complementary check to global fit analysis, it is also essential in scale development because the fit results will guide item revision and/or deletion (Liu & Maydeu-Olivares, 2014). During data collection, missing response data may likely happen due to various reasons. Chi-square-based item fit…
Descriptors: Goodness of Fit, Item Response Theory, Scores, Test Length
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Yanyan; Strachan, Tyler; Ip, Edward H.; Willse, John T.; Chen, Shyh-Huei; Ackerman, Terry – International Journal of Testing, 2020
This research examined correlation estimates between latent abilities when using the two-dimensional and three-dimensional compensatory and noncompensatory item response theory models. Simulation study results showed that the recovery of the latent correlation was best when the test contained 100% of simple structure items for all models and…
Descriptors: Item Response Theory, Models, Test Items, Simulation
Derek Sauder – ProQuest LLC, 2020
The Rasch model is commonly used to calibrate multiple choice items. However, the sample sizes needed to estimate the Rasch model can be difficult to attain (e.g., consider a small testing company trying to pretest new items). With small sample sizes, auxiliary information besides the item responses may improve estimation of the item parameters.…
Descriptors: Item Response Theory, Sample Size, Computation, Test Length
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Köse, Alper; Dogan, C. Deha – International Journal of Evaluation and Research in Education, 2019
The aim of this study was to examine the precision of item parameter estimation in different sample sizes and test lengths under three parameter logistic model (3PL) item response theory (IRT) model, where the trait measured by a test was not normally distributed or had a skewed distribution. In the study, number of categories (1-0), and item…
Descriptors: Statistical Bias, Item Response Theory, Simulation, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Ru; Guo, Hongwen; Dorans, Neil J. – ETS Research Report Series, 2021
Two families of analysis methods can be used for differential item functioning (DIF) analysis. One family is DIF analysis based on observed scores, such as the Mantel-Haenszel (MH) and the standardized proportion-correct metric for DIF procedures; the other is analysis based on latent ability, in which the statistic is a measure of departure from…
Descriptors: Robustness (Statistics), Weighted Scores, Test Items, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Svetina, Dubravka; Liaw, Yuan-Ling; Rutkowski, Leslie; Rutkowski, David – Journal of Educational Measurement, 2019
This study investigates the effect of several design and administration choices on item exposure and person/item parameter recovery under a multistage test (MST) design. In a simulation study, we examine whether number-correct (NC) or item response theory (IRT) methods are differentially effective at routing students to the correct next stage(s)…
Descriptors: Measurement, Item Analysis, Test Construction, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mousavi, Amin; Cui, Ying – Education Sciences, 2020
Often, important decisions regarding accountability and placement of students in performance categories are made on the basis of test scores generated from tests, therefore, it is important to evaluate the validity of the inferences derived from test results. One of the threats to the validity of such inferences is aberrant responding. Several…
Descriptors: Student Evaluation, Educational Testing, Psychological Testing, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fu, Jianbin; Feng, Yuling – ETS Research Report Series, 2018
In this study, we propose aggregating test scores with unidimensional within-test structure and multidimensional across-test structure based on a 2-level, 1-factor model. In particular, we compare 6 score aggregation methods: average of standardized test raw scores (M1), regression factor score estimate of the 1-factor model based on the…
Descriptors: Comparative Analysis, Scores, Correlation, Standardized Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Applied Measurement in Education, 2017
Karabatsos compared the power of 36 person-fit statistics using receiver operating characteristics curves and found the "H[superscript T]" statistic to be the most powerful in identifying aberrant examinees. He found three statistics, "C", "MCI", and "U3", to be the next most powerful. These four statistics,…
Descriptors: Nonparametric Statistics, Goodness of Fit, Simulation, Comparative Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5