Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 41 |
Since 2006 (last 20 years) | 122 |
Descriptor
Calculus | 143 |
Mathematical Logic | 143 |
Mathematics Instruction | 102 |
Validity | 101 |
College Mathematics | 66 |
Mathematical Concepts | 58 |
Equations (Mathematics) | 40 |
Teaching Methods | 39 |
Problem Solving | 30 |
Algebra | 28 |
Mathematics Education | 24 |
More ▼ |
Source
Author
Publication Type
Reports - Descriptive | 143 |
Journal Articles | 141 |
Tests/Questionnaires | 3 |
Speeches/Meeting Papers | 2 |
Multilingual/Bilingual… | 1 |
Education Level
Higher Education | 65 |
Postsecondary Education | 31 |
High Schools | 12 |
Secondary Education | 9 |
Two Year Colleges | 6 |
Elementary Secondary Education | 2 |
Elementary Education | 1 |
Middle Schools | 1 |
Location
Germany | 2 |
Canada | 1 |
Colorado (Boulder) | 1 |
Minnesota | 1 |
Netherlands | 1 |
Pennsylvania (Philadelphia) | 1 |
Philippines | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hongwei Lou – International Journal of Mathematical Education in Science and Technology, 2025
In classical calculus textbooks, the existence of primitive functions of continuous functions is proved by using Riemann integrals. Recently, Patrik Lundström gave a proof via polynomials, based on the Weierstrass approximation theorem. In this note, it is shown that the proof will be easy by using continuous piecewise linear functions.
Descriptors: Calculus, Mathematics, Mathematical Logic, Validity
Brody, Jed – Physics Teacher, 2021
Bell's theorem is a topic of perennial fascination. Publishers and the general public have a steady appetite for approachable books about its implications. The scholarly literature includes many analogies to Bell's theorem and simple derivations of Bell inequalities, and some of these simplified discussions are the basis of interactive web pages.…
Descriptors: Calculus, Computation, Validity, Mathematical Logic
Kalman, Dan – PRIMUS, 2023
In the precalculus curriculum, logistic growth generally appears in either a discrete or continuous setting. These actually feature distinct versions of logistic growth, and textbooks rarely provide exposure to both. In this paper, we show how each approach can be improved by incorporating an aspect of the other, based on a little known synthesis…
Descriptors: Mathematics Education, Calculus, Teaching Methods, Mathematical Models
Bissell, J. J. – International Journal of Mathematical Education in Science and Technology, 2021
The ability to distinguish between exact and inexact differentials is an important part of solving first-order differential equations of the form Adx + Bdy = 0, where A(x,y) [not equal to] 0 and B(x,y) [not equal to] 0 are functions of x and y However, although most undergraduate textbooks motivate the necessary condition for exactness, i.e. the…
Descriptors: Validity, Mathematical Logic, Equations (Mathematics), Calculus
Wang, Jinhui – Physics Teacher, 2020
The distant magnetic field of a magnetic dipole is usually derived via the magnetic vector potential and substantial vector calculus. This paper presents an alternate proof that is less mathematically intensive, and that ties together various problem-solving tricks (the principle of virtual work, observation that only instantaneous quantities…
Descriptors: Physics, Magnets, Calculus, Mathematical Logic
Soosloff, Elisa; Huey, Maryann; Alexander, Daniel S. – PRIMUS, 2023
In this reflection of teaching, we describe a series of activities that introduce the Taylor series through dynamic visual representations with explicit connections to students' prior learning. Over the past several decades, educators have noted that curricular materials tend to present the Taylor series in a way that students often interpret as…
Descriptors: Mathematics Instruction, Visual Aids, Prior Learning, Teaching Methods
Gabour, Manal – International Journal of Mathematical Education in Science and Technology, 2022
In this article special sequences involving the Butterfly theorem are defined. The Butterfly theorem states that if M is the midpoint of a chord PQ of a circle, then following some definite instructions, it is possible to get two other points X and Y on PQ, such that M is also the midpoint of the segment XY. The convergence investigation of those…
Descriptors: Mathematics Instruction, Computer Software, Secondary School Mathematics, College Mathematics
Sauerheber, Richard D.; Muñoz, Brandon – International Journal of Mathematical Education in Science and Technology, 2020
A simple in-class demonstration of integral Calculus for first-time students is described for straightforward whole number area magnitudes, for ease of understanding. Following the Second Fundamental Theorem of the Calculus, macroscopic differences in ordinal values of several integrals, [delta]"F"(x), are compared to the regions of area…
Descriptors: Calculus, Mathematics Instruction, Comparative Analysis, Physics
Lozada-Cruz, German – International Journal of Mathematical Education in Science and Technology, 2020
In this note, some variants of Cauchy's mean value theorem are proved. The main tools to prove these results are some elementary auxiliary functions.
Descriptors: Validity, Mathematical Logic, Mathematics Instruction, Engineering Education
Engelke Infante, N. – PRIMUS, 2021
In calculus, related rates problems are some of the most difficult for students to master. This is due, in part, to the nature of the problems, which require constructing a nuanced mental model and a solid understanding of the function. Many textbooks present a procedure for their solution that is unlike how experts approach the problem and elide…
Descriptors: Mathematics Instruction, College Mathematics, Calculus, Schemata (Cognition)
Nystedt, P. – International Journal of Mathematical Education in Science and Technology, 2020
We use Taylor's formula with Lagrange remainder to make a modern adaptation of Poisson's proof of a version of the fundamental theorem of calculus in the case when the integral is defined by Euler sums, that is Riemann sums with left endpoints which are equally spaced. We discuss potential benefits for such an approach in basic calculus courses.
Descriptors: Calculus, Mathematics Instruction, Mathematical Formulas, Validity
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2018
For a function "f": [real numbers set][superscript n]\{(0,…,0)}[right arrow][real numbers set] with continuous first partial derivatives, a theorem of Euler characterizes when "f" is a homogeneous function. This note determines whether the conclusion of Euler's theorem holds if the smoothness of "f" is not assumed. An…
Descriptors: Mathematical Logic, Validity, Mathematics Instruction, Calculus
Dawkins, Paul Christian – For the Learning of Mathematics, 2019
This paper sets forth a construct that describes how many undergraduate students understand mathematical terms to refer to mathematical objects, namely that they only refer to those objects that satisfy the term. I call this students' pronominal sense of reference (PSR) because it means they treat terms as pronouns that point to objects, like…
Descriptors: Mathematics Instruction, Calculus, College Mathematics, Undergraduate Students
Rodriguez, Jon-Marc G.; Bain, Kinsey; Towns, Marcy H. – International Journal of Science and Mathematics Education, 2020
In this paper, we introduce and discuss a construct called "graphical forms," an extension of Sherin's symbolic forms. In its original conceptualization, symbolic forms characterize the ideas students associate with patterns in a mathematical expression. To expand symbolic forms beyond only characterizing mathematical equations, we use…
Descriptors: Mathematical Logic, Mathematics Skills, Symbols (Mathematics), Graphs
Gaines, Benjamin – PRIMUS, 2022
In introductory level math classes, writing prompts can be used as part of weekly homework assignments to encourage students to think more deeply about the subject at hand. These writing prompts present scenarios related to recently learned material in a new context and require students to submit a short written response online. Writing prompts…
Descriptors: Introductory Courses, Mathematics Instruction, Cues, Writing (Composition)