Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 9 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 34 |
Descriptor
Models | 48 |
Semantics | 48 |
Data Analysis | 28 |
Information Retrieval | 11 |
Data Collection | 10 |
Prediction | 9 |
Artificial Intelligence | 8 |
Data | 8 |
Research Methodology | 8 |
Automation | 7 |
Computation | 7 |
More ▼ |
Source
Author
Amanda Goodwin | 2 |
Banks, William P. | 2 |
Feng, Mingyu, Ed. | 2 |
Matthew Naveiras | 2 |
Paul De Boeck | 2 |
Sun-Joo Cho | 2 |
Abu Jbara, Ahmed | 1 |
Afonso, Ana S. | 1 |
Aguilar, J. | 1 |
Aloui, Nadia | 1 |
Andrea Domínguez-Lara | 1 |
More ▼ |
Publication Type
Journal Articles | 27 |
Reports - Research | 17 |
Dissertations/Theses -… | 10 |
Reports - Descriptive | 7 |
Reports - Evaluative | 6 |
Collected Works - Proceedings | 4 |
Speeches/Meeting Papers | 2 |
Collected Works - Serial | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 8 |
Secondary Education | 5 |
Junior High Schools | 4 |
Middle Schools | 4 |
High Schools | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 8 | 1 |
Audience
Administrators | 1 |
Practitioners | 1 |
Location
Brazil | 2 |
Japan | 2 |
Portugal | 2 |
United Kingdom | 2 |
Afghanistan | 1 |
Asia | 1 |
Australia | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Test of English as a Foreign… | 1 |
What Works Clearinghouse Rating
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Oliveira Moraes, Laura; Pedreira, Carlos Eduardo – IEEE Transactions on Learning Technologies, 2021
Manually determining concepts present in a group of questions is a challenging and time-consuming process. However, the process is an essential step while modeling a virtual learning environment since a mapping between concepts and questions using mastery level assessment and recommendation engines is required. In this article, we investigated…
Descriptors: Computer Science Education, Semantics, Coding, Matrices
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Andrea Domínguez-Lara; Wulfrano Arturo Luna-Ramírez – International Association for Development of the Information Society, 2022
The automatic code generation is the process of generating source code snippets from a program, i.e., code for generating code. Its importance lies in facilitating software development, particularly important is helping in the implementation of software designs such as engineering diagrams, in such a case, automatic code generation copes with the…
Descriptors: Programming, Coding, Computer Software, Programming Languages
Castillo-Zúñiga, Iván; Luna-Rosas, Francisco-Javier; López-Veyna, Jaime-Iván – Comunicar: Media Education Research Journal, 2022
This article presents an Internet data analysis model based on Web Mining with the aim to find knowledge about large amounts of data in cyberspace. To test the proposed method, suicide web pages were analyzed as a study case to identify and detect traits in students with suicidal tendencies. The procedure considers a Web Scraper to locate and…
Descriptors: Psychological Patterns, Suicide, Web Sites, Student Characteristics
Sampathkumar, Hariprasad – ProQuest LLC, 2016
Information used to assist biomedical and clinical research has largely comprised of data available in published sources like scientific papers and journals, or in clinical sources like patient health records, lab reports and discharge summaries. Information from such sources, though extensive and organized, is often not readily available due to…
Descriptors: Information Retrieval, Models, Discovery Processes, Discussion Groups
Johns, Brendan T.; Jones, Michael N.; Mewhort, D. J. K. – Grantee Submission, 2019
To account for natural variability in cognitive processing, it is standard practice to optimize a model's parameters by fitting it to behavioral data. Although most language-related theories acknowledge a large role for experience in language processing, variability reflecting that knowledge is usually ignored when evaluating a model's fit to…
Descriptors: Language Processing, Models, Information Sources, Linguistics
Aguilar, J.; Buendia, O.; Pinto, A.; Gutiérrez, J. – Interactive Learning Environments, 2022
Social Learning Analytics (SLA) seeks to obtain hidden information in large amounts of data, usually of an educational nature. SLA focuses mainly on the analysis of social networks (Social Network Analysis, SNA) and the Web, to discover patterns of interaction and behavior of educational social actors. This paper incorporates the SLA in a smart…
Descriptors: Learning Analytics, Cognitive Style, Socialization, Social Networks
Reich, Justin; Tingley, Dustin; Leder-Luis, Jetson; Roberts, Margaret E.; Stewart, Brandon M. – Journal of Learning Analytics, 2015
Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the…
Descriptors: Large Group Instruction, Online Courses, Data Collection, Data Analysis
Sharp, Rebecca Reynolds – ProQuest LLC, 2017
We address the challenging task of "computational natural language inference," by which we mean bridging two or more natural language texts while also providing an explanation of how they are connected. In the context of question answering (i.e., finding short answers to natural language questions), this inference connects the question…
Descriptors: Computation, Natural Language Processing, Inferences, Questioning Techniques
Hlioui, Fedia; Aloui, Nadia; Gargouri, Faiez – International Journal of Web-Based Learning and Teaching Technologies, 2021
Nowadays, the virtual learning environment has become an ideal tool for professional self-development and bringing courses for various learner audiences across the world. There is currently an increasing interest in researching the topic of learner dropout and low completion in distance learning, with one of the main concerns being elevated rates…
Descriptors: At Risk Students, Withdrawal (Education), Dropouts, Distance Education
Dillenbourg, Pierre – International Journal of Artificial Intelligence in Education, 2016
How does AI&EdAIED today compare to 25 years ago? This paper addresses this evolution by identifying six trends. The trends are ongoing and will influence learning technologies going forward. First, the physicality of interactions and the physical space of the learner became genuine components of digital education. The frontier between the…
Descriptors: Artificial Intelligence, Educational Trends, Trend Analysis, Educational Technology
Clow, Doug – Teaching in Higher Education, 2013
Learning analytics, the analysis and representation of data about learners in order to improve learning, is a new lens through which teachers can understand education. It is rooted in the dramatic increase in the quantity of data about learners and linked to management approaches that focus on quantitative metrics, which are sometimes antithetical…
Descriptors: Foreign Countries, Data, Data Analysis, Measures (Individuals)
Taheriyan, Mohsen – ProQuest LLC, 2015
Information sources such as relational databases, spreadsheets, XML, JSON, and Web APIs contain a tremendous amount of structured data, however, they rarely provide a semantic model to describe their contents. Semantic models of data sources capture the intended meaning of data sources by mapping them to the concepts and relationships defined by a…
Descriptors: Semantics, Information Sources, Data, Models