Publication Date
In 2025 | 1 |
Since 2024 | 17 |
Descriptor
Bayesian Statistics | 17 |
Prediction | 17 |
Models | 5 |
Academic Achievement | 4 |
Learning Analytics | 4 |
Accuracy | 3 |
Classification | 3 |
Data Analysis | 3 |
Evaluation Methods | 3 |
Simulation | 3 |
Statistical Inference | 3 |
More ▼ |
Source
Author
David Kaplan | 2 |
Kjorte Harra | 2 |
Alex C. Garn | 1 |
Andreas Stenling | 1 |
Ashley L. Watts | 1 |
Brandon Zhang | 1 |
Carrie Demmans Epp | 1 |
Chi-Jung Sui | 1 |
Chun-Yen Chang | 1 |
Dalia Khairy | 1 |
Denisa Gandara | 1 |
More ▼ |
Publication Type
Reports - Research | 14 |
Journal Articles | 12 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Elementary Education | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Education Longitudinal Study… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Wes Bonifay; Sonja D. Winter; Hanamori F. Skoblow; Ashley L. Watts – Grantee Submission, 2024
Replication provides a confrontation of psychological theory, not only in experimental research, but also in model-based research. Goodness-of-fit (GOF) of the original model to the replication data is routinely provided as meaningful evidence of replication. We demonstrate, however, that GOF obscures important differences between the original and…
Descriptors: Goodness of Fit, Evidence, Replication (Evaluation), Bayesian Statistics
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Hyemin Han; Kelsie J. Dawson – Journal of Moral Education, 2024
In the present study, we examined how the perceived attainability and relatability of moral exemplars predicted moral elevation and pleasantness among both adult and college student participants. Data collected from two experiments were analyzed with Bayesian multilevel modeling to explore which factors significantly predicted outcome variables at…
Descriptors: Moral Values, Prediction, Models, Behavior Patterns
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Mauricio Garnier-Villarreal; Terrence D. Jorgensen – Grantee Submission, 2024
Model evaluation is a crucial step in SEM, consisting of two broad areas: global and local fit, where local fit indices are use to modify the original model. In the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are used to select the parameters that can be added to improve the fit. The…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Indexes
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Samer A. Nour Eddine – ProQuest LLC, 2024
In this thesis, I use a combination of simulations and empirical data to demonstrate that a small set of structural and functional principles - the basic tenets of predictive coding theory - succinctly accounts for a very wide range of properties in the language processing system. Predictive coding approximates hierarchical Bayesian inference via…
Descriptors: Semantics, Simulation, Psycholinguistics, Bayesian Statistics
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
MOOC Performance Prediction and Analysis via Bayesian Network and Maslow's Hierarchical Needs Theory
Luyu Zhu; Jia Hao; Jianhou Gan – Interactive Learning Environments, 2024
Nowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing…
Descriptors: MOOCs, Academic Achievement, Prediction, Bayesian Statistics
Xiaoxiao Liu; Jiahua Liu; Carrie Demmans Epp; Ying Cui – Educational Technology Research and Development, 2025
Parental involvement is essential to children's learning engagement activities and academic performance. Much research revolves around the impact of parental involvement on students' academic performance or the relationship between student engagement and grades. However, few studies have used process data to examine the relationship between…
Descriptors: Parent Participation, Parent Child Relationship, Learner Engagement, Academic Achievement
Alex C. Garn; Andreas Stenling – Educational Psychology, 2024
This study investigated daily motivation regulation as a multilevel mediator of undergraduate students' intrinsic and extrinsic motivation and academic functioning. Undergraduate students (N = 124) completed measures on motivation, motivation regulation, and study time for 10 consecutive days leading up to a statistics exam. Bayesian multilevel…
Descriptors: Student Motivation, Prediction, Academic Achievement, Undergraduate Students
Previous Page | Next Page »
Pages: 1 | 2