NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Bulus, Metin – ProQuest LLC, 2017
In education, sample characteristics can be complex due to the nested structure of students, teachers, classrooms, schools, and districts. In the past, not many considerations were given to such complex sampling schemes in statistical power analysis. More recently in the past two decades, however, education scholars have developed tools to conduct…
Descriptors: Educational Research, Regression (Statistics), Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Journal of Experimental Education, 2016
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Descriptors: Multivariate Analysis, Educational Research, Error of Measurement, Research Problems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Beaujean, A. Alexander – Practical Assessment, Research & Evaluation, 2014
A common question asked by researchers using regression models is, What sample size is needed for my study? While there are formulae to estimate sample sizes, their assumptions are often not met in the collected data. A more realistic approach to sample size determination requires more information such as the model of interest, strength of the…
Descriptors: Regression (Statistics), Sample Size, Sampling, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Peer reviewed Peer reviewed
Direct linkDirect link
Micklewright, John; Schnepf, Sylke V.; Silva, Pedro N. – Economics of Education Review, 2012
Investigation of peer effects on achievement with sample survey data on schools may mean that only a random sample of the population of peers is observed for each individual. This generates measurement error in peer variables similar in form to the textbook case of errors-in-variables, resulting in the estimated peer group effects in an OLS…
Descriptors: Foreign Countries, Sampling, Error of Measurement, Peer Groups
Fan, Xitao – 1994
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Regression (Statistics), Sample Size
Peer reviewed Peer reviewed
Enders, Craig K. – Educational and Psychological Measurement, 2001
Examined the performance of a recently available full information maximum likelihood (FIML) estimator in a multiple regression model with missing data using Monte Carlo simulation and considering the effects of four independent variables. Results indicate that FIML estimation was superior to that of three ad hoc techniques, with less bias and less…
Descriptors: Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics, Monte Carlo Methods
Williams, Janice E. – 1987
A Monte Carlo study was done to determine the adequate sample size for quasi-experimental regression studies, which compare regression lines for two groups and estimate their point of intersection. Populations of 1,000 subjects in each of two groups were constructed (using random normal deviates) to yield equivalent regression lines of opposite…
Descriptors: Computer Simulation, Estimation (Mathematics), Monte Carlo Methods, Quasiexperimental Design
Peer reviewed Peer reviewed
Hand, Michael L. – Evaluation Review, 1990
Use of the bootstrap resampling technique (BRT) is assessed in its application to resampling analysis associated with measurement of payment allocation errors by federally funded Family Assistance Programs. The BRT is applied to a food stamp quality control database in Oregon. This analysis highlights the outlier-sensitivity of the…
Descriptors: Equations (Mathematics), Error Patterns, Family Income, Federal Aid