NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Max Chen; Yichen Li; Hilson Shrestha; Noe¨lle Rakotondravony; Andrew Teixeira; Lane Harrison; Robert E. Dempski – Journal of Chemical Education, 2024
Industrial and academic laboratories are undergoing a paradigm shift in process technology from batch to modular flow. Implementation of modular flow processes can enable more efficient operation with superior throughput, scalability, and safety factors owing to superior transport and reaction kinetics. However, both fine chemical and…
Descriptors: Chemical Engineering, Chemistry, Undergraduate Students, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Roman, Claudia; Lazar, Liliana; García-Morales, Moisés – Journal of Chemical Education, 2020
Mass transfer separations are of extreme importance to professionals working in the chemical industry. For this reason, chemical engineering and industrial chemistry students are both taught these unit operations at the final years of their study programs. The traditional way of carrying out their design is based on the use of deterministic…
Descriptors: Chemistry, Monte Carlo Methods, Science Instruction, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Anastasio, Daniel; Suresh, Aravind; Burkey, Daniel D. – Chemical Engineering Education, 2013
Mobile platforms and cloud computing allow collaborative sharing and submission of work in ways not feasible until recently. In this article, we detail how we took a writing-intensive laboratory and made the submission, reading, grading, and returning of student work online and paper-free, while maintaining familiar elements of pen-and-paper…
Descriptors: Internet, Information Storage, Educational Technology, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P. – Chemical Engineering Education, 2011
Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…
Descriptors: Chemical Engineering, Laboratory Experiments, Science Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Archer, Shivaun D. – Chemical Engineering Education, 2011
Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…
Descriptors: Chemical Engineering, Science Laboratories, College Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ricardez-Sandoval, Luis A.; Blankespoor, Wesley; Budman, Hector M. – Chemical Engineering Education, 2010
This paper describes an experiment performed by the fourth year chemical engineering students in the process control laboratory at the University of Waterloo. The objective of this experiment is to test the capabilities of a constrained Model Predictive Controller (MPC) to control the operation of a Double Pipe Heat Exchanger (DPHE) in real time.…
Descriptors: Science Laboratories, Chemical Engineering, Science Experiments, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Le Roux, G. A. C.; Reis, G. B.; de Jesus, C. D. F.; Giordano, R. C.; Cruz, A. J. G.; Moreira, P. F., Jr.; Nascimento, C. A. O.; Loureiro, L. V. – Chemical Engineering Education, 2010
This paper describes the use of weblabs--web based experiments--for cooperative learning by students working together from two different locations to conduct experiments and write reports.
Descriptors: Cooperative Learning, Chemical Engineering, Teaching Methods, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Liberatore, Matthew W. – Chemical Engineering Education, 2010
YouTube Fridays is a teaching tool that devotes the first five minutes of class each Friday to a YouTube video related to the course. Students select the videos, which expand the class's educational content in courses such as thermodynamics and material and energy balances. From assessments of two pilot studies using YouTube Fridays in Chemical…
Descriptors: Video Technology, Thermodynamics, Chemical Engineering, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B. – Chemical Engineering Education, 2008
Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…
Descriptors: Mathematical Models, Computer Software, Problem Solving, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Binous, Housam – Chemical Engineering Education, 2008
We show a new approach, based on the utilization of Matlab and Mathematica, for solving liquid-liquid extraction and binary distillation problems. In addition, the author shares his experience using these two softwares to teach equilibrium staged separations at the National Institute of Applied Sciences and Technology. (Contains 7 figures.)
Descriptors: Computation, Teaching Methods, Chemical Engineering, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph – Chemical Engineering Education, 2008
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
Descriptors: Organic Chemistry, Chemical Engineering, Science Instruction, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Olaya, Maria del Mar; Ibarra, Isabel; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio – Chemical Engineering Education, 2007
An exercise to compute LLE data is presented to illustrate the problems that can arise when the isoactivity equilibrium condition is used in the LLE calculations. A much more efficient condition is obtained when isoactivity is combined with the common tangent line criterion, avoiding false solutions that correspond with very low values of the…
Descriptors: Chemistry, Computation, Chemical Engineering, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Guo, Jing; Kettler, David J.; Al-Dahhan, Muthanna – Chemical Engineering Education, 2007
A common undergraduate chemical engineering experiment has been modified for on-line operation over the Internet. By adopting rapidly changing Internet and object component technologies, we developed a novel approach combining the Internet and regular laboratory equipment. The client-server applications use a Visual Basic and Labtech programming…
Descriptors: Laboratory Equipment, Chemical Engineering, Internet, College Science
Peer reviewed Peer reviewed
Roat, S. D.; Melsheimer, S. S. – Chemical Engineering Education, 1987
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
Takoudis, Christos G. – Chemical Engineering Education, 1987
Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)
Descriptors: Chemical Engineering, College Science, Computer Uses in Education, Course Content
Previous Page | Next Page »
Pages: 1  |  2