NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers5
Laws, Policies, & Programs
Assessments and Surveys
Self Directed Learning…1
What Works Clearinghouse Rating
Showing 1 to 15 of 46 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joseph Chiarelli; Melissa A. St. Hilaire; Brandi L. Baldock; Jimmy Franco; Stephen Theberge; Anthony L. Fernandez – Journal of Chemical Education, 2025
There is a growing need for chemistry students to be able to handle and manipulate large datasets and analyze them in an efficient and accessible way. This creates the need to develop course materials that introduce these topics early in the undergraduate curriculum. To address this growing need, this activity introduced RStudio to students…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, V. V.; Varaksina, E. I. – Physics Education, 2022
We propose a laboratory experiment on the quantitative study of the normal dispersion of light. A triangular isosceles prism made of flint glass TF3 is used as the object of study, and we describe a simple and affordable device for observing and photographing the dispersion spectrum on a smartphone. A possibility of the quantitative investigation…
Descriptors: Light, Physics, Science Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rachel D. Davidson; Thomas E. O'Loughlin; Theodore E. G. Alivio; Soon-Mi Lim; Sarbajit Banerjee – Journal of Chemical Education, 2022
In this laboratory experiment, students modify a series of surfaces and explore the effects of varying surface chemistry and texture on wettability by different probe liquids. Students begin by building a simple contact angle goniometer utilizing their mobile phone cameras. Next, they contrast the wettability of planar glass substrates…
Descriptors: Science Instruction, Science Experiments, Laboratory Experiments, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Titikan Somboon; Wichien Sang-aroon; Sira Sansuk – Journal of Chemical Education, 2023
Undergraduate-level laboratory experiments that integrate multidisciplinary chemistry concepts into a single activity are very appealing and thought-provoking for chemistry students. Here, we use the oscillating chemical reaction to introduce students to the analytical detection concept. The Belousov-Zhabotinsky reaction is employed as a simple…
Descriptors: Undergraduate Students, Science Instruction, Learning Activities, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Wye, Steven – Physics Education, 2023
During the COVID-19 pandemic and subsequent lockdown, both schools and universities faced significant challenges in moving teaching from an in-situ setting to a remote one, this included laboratory experiments. This paper presents an experiment developed to use a phone's in built pressure sensor, common to most smart phones. By using this sensor…
Descriptors: COVID-19, Pandemics, School Closing, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Iraya Yánez-Pérez; Radu Bogdan Toma; Jesús Ángel Meneses-Villagrá – Journal of New Approaches in Educational Research, 2024
Virtual laboratories and simulations have emerged as innovative solutions for science teaching. However, existing resources have various limitations and constraints including cognitive load/mental burden and limited coverage of all necessary steps in scientific inquiry, focusing mainly on the experimental simulation. To bridge this gap and address…
Descriptors: Preservice Teachers, Student Attitudes, Computer Software, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Angela L. Mahaffey – Journal of Chemical Education, 2023
Chemistry topics are ubiquitous in healthcare diagnostics as well as health professions undergraduate curricula. However, there are limited correlations between chemistry and healthcare made in textbooks or template lecture materials. For undergraduate nursing students (BSN) enrolled in a Chemistry for Health Professions course, the author (and…
Descriptors: Computer Simulation, Laboratory Experiments, Chemistry, Allied Health Occupations Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, J.; Bouman, L.; Cayruth, F.; Elliott, C.; Francis, B.; Gogo, E.; Hyman, C.; Marshall, A.; Masters, J.; Olano, W.; Paone, A.; Patel, K.; Richards, L.; Sbardella, C.; Snider, A.; Trinh, B.; Umari, F.; Wilks, H. – Physics Teacher, 2020
These days, smartphones are popular commodities among students in high school and college. Students carry their devices all the time, so why not use such a popular electronic device to measure physical quantities such as "g" in physics labs? In this work, we report a "multiple tasking" method, a measurement technique that we…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Setiaji, Bayu; Santoso, Purwoko Haryadi – International Review of Research in Open and Distributed Learning, 2023
The COVID-19 pandemic has constituted a sudden educational transformation around the world. It has disrupted instructors, including physics educators, forcing them to adjust to remote teaching. The hands-on laboratory, one of the components of physics instruction, has also had to rapidly go online in all branches of this science, including nuclear…
Descriptors: COVID-19, Pandemics, Educational Technology, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Supacha Wirojsaengthong; Wanlapa Aeungmaitrepirom; Fuangfa Unob; Saowarux Fuangswasdi; Puttaruksa Varanusupakul; Kanphitcha Mueangdech; Thirachat Treetos; Pumidech Puthongkham – Journal of Chemical Education, 2023
Hands-on experiences in analytical chemistry laboratories are essential to improve students' technical skills on handling analytical glassware and instruments, but the coronavirus pandemic in 2020-2021 disrupted such learning activities. Thus, alternative remote activities are required to supplement practical skills. In this work, a new portable…
Descriptors: Science Laboratories, Chemistry, Science Instruction, COVID-19
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Borrull, Anna; Valls, Cristina – Journal of Turkish Science Education, 2021
Practical work as observation and experimentation are vital parts of science education. One way to accomplish this is by applying inquiry-based learning in laboratory activities. Inquiry enhances the development of scientific skills as well as the learning of the scientific concepts. In the present article, a laboratory activity was developed to…
Descriptors: Telecommunications, Handheld Devices, Science Instruction, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Carroll, Ryan; Lincoln, James – Physics Teacher, 2020
The phyphox app has demonstrated itself to be useful and impressive for physics teaching. The app is free to download and has so many features that it seems it may be particularly helpful in this time of distance learning. Phyphox (pronounced to sound like "physics") works for Android and Apple phones, and there are many experiments…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Zhdanov, Arsenii; Pyay, Anna – Physics Teacher, 2022
Mobile phones are a widely used platform for educational apps, mobile health, and a variety of chemical tests. Here, we are working on a mobile phone-based physics lab (mPhysics) that uses a mobile phone's capabilities to run simple physics experiments and demonstrations. While a mobile phone can be used to analyze magnetic and optical properties…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gallitto, Aurelio Agliolo; Battaglia, Onofrio Rosario; Fazio, Claudio – Physics Education, 2021
We describe an educational activity that can be done by using smartphones to collect data in physics experiments aimed to measure the oscillating period of a spring-mass system and the elastic constant of the helicoidal spring by the dynamic method. Results for the oscillating period and for the elastic constant of the spring agree very well with…
Descriptors: Science Instruction, Physics, Measurement Techniques, Telecommunications
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4