Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 35 |
Since 2006 (last 20 years) | 65 |
Descriptor
Motion | 73 |
Problem Solving | 73 |
Scientific Concepts | 73 |
Physics | 50 |
Science Instruction | 44 |
Teaching Methods | 31 |
Equations (Mathematics) | 18 |
Mechanics (Physics) | 17 |
Scientific Principles | 17 |
Science Activities | 12 |
Concept Formation | 10 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Teachers | 16 |
Students | 3 |
Practitioners | 2 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Daniel A. Martens Yaverbaum – ProQuest LLC, 2024
This study investigated evidence of how students' mental models of fundamental kinematic relations evolved (i.e., developed cognitively over time) as observed during an introductory course in calculus-based classical mechanics. The core of the curriculum is based on a claim known as Galileo's principle of relativity. The course material comprised…
Descriptors: Schemata (Cognition), Motion, Physics, Science Education
Wong, Kin Son; Wong, Hang – Physics Teacher, 2022
The law of conservation of momentum is a fundamental law of nature. It states that the momentum of an isolated system is conserved. In high school or introductory-level physics courses, for simplicity, teachers and textbooks always use collisions in one dimension as the examples to introduce the concept of conservation of momentum. To solve simple…
Descriptors: Scientific Principles, Kinetics, Motion, Scientific Concepts
Adamopoulos, Anastasios; Adamopoulos, Nikolaos – International Journal of Mathematical Education in Science and Technology, 2022
The cases of constant and quadratic damping of free oscillations are missing from standard textbooks, even at college and university level. The case most examined is that of linear damping, the reason being that the student can work out a closed form which describes all stages of motion. The case of constant damping is straightforward to be…
Descriptors: Scientific Concepts, Mechanics (Physics), Problem Solving, Calculus
Mungan, Carl E. – Physics Teacher, 2021
A common homework problem in many introductory physics courses is similar to the following. "A car drives at constant speed over a hill on a road in the shape of a vertical circular arc. What is the maximum speed the car can have and not lose contact with the road at the crest of the hill?" Unfortunately this problem is flawed, because…
Descriptors: Homework, Introductory Courses, Motion, Problem Solving
Elizabeth Stippell; Alexey V. Akimov; Oleg V. Prezhdo – Journal of Chemical Education, 2023
We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized…
Descriptors: Undergraduate Students, College Science, Quantum Mechanics, Chemistry
De Luca, R.; Faella, O. – Physics Education, 2022
The static equilibrium properties of a spool, resting on an incline and subject to the tension exerted by a string wrapped around the core cylinder, are studied by means of Newtonian mechanics. The overall behaviour of this system is imagined to be similar to that of a doggie kept on a leash. Starting from the well-known mechanical properties of…
Descriptors: Science Instruction, Mechanics (Physics), Inquiry, Scientific Concepts
Cashata, Zerihun Anibo; Seyoum, Desta Gebeyehu; Gashaw, Fikadu Eshetu – International Journal of Research in Education and Science, 2023
Jigsaw-IV Problem-solving method is innovative active learning instruction used to improve college student's learning. The main purpose of the study was to investigate the effect of Jigsaw-IV problem-solving instruction on preservice physics teachers' (PSPT) procedural knowledge in college of teacher education in the Southern nation nationality…
Descriptors: Foreign Countries, Cooperative Learning, Problem Solving, Active Learning
Eryilmaz-Toksoy, Seyhan – Journal of Theoretical Educational Science, 2022
In this research, it was aimed to analyze the problem solving strategies used during solving problems related to constant speed and constant acceleration motion, which are often used in graphs, according to the presentation of the problem (text and graph). The research was carried out with 119 students studying in the 11th grade. In the research…
Descriptors: Motion, Problem Solving, Scientific Concepts, Secondary School Science
Anna Koumara; Michael Bakaloglou; Hariton M. Polatoglou – World Journal of Education, 2024
Eleven high school students participated in a one-week STEM summer camp focused on designing and building parachutes to deliver fragile objects safely. Using the Engineering Design Process (EDP) as a framework, students explored how canopy size affects performance. They applied physics concepts such as terminal velocity, forces, and acceleration,…
Descriptors: Foreign Countries, High School Students, Summer Science Programs, Physics
Joseph, Toby – Physics Education, 2021
Problems involving rotating systems analysed from an inertial frame, without invoking fictitious forces, is something that freshman students find difficult to understand in an introductory mechanics course. In this article we try to see what could be the factors that lead to this difficulty and propose a set of arguments that could be used to…
Descriptors: Mechanics (Physics), Motion, Scientific Concepts, Introductory Courses
Atkin, Keith – Physics Education, 2019
This paper shows how a freely downloadable and powerful software package, "SMath Studio," can be used to model physical systems in physics teaching. The software can form the basis of lecture demonstrations by teachers or can be used individually by students working in an educational environment or on their own home computers.
Descriptors: Physics, Science Instruction, Problem Solving, Scientific Concepts
Kiliç, Cihan; Özaydinli-Tanriverdi, Belgin – Education Quarterly Reviews, 2022
The integration of mathematics and science in teaching facilitates student learning, engagement, motivation, problem-solving, critical thinking, and real-life application. Although curriculum integration is theoretically desirable for many educators, what to integrate and how to integrate are often the big questions facing teachers working within…
Descriptors: Mathematics Instruction, Science Instruction, Motion, Grade 9
Ryan Tapping – ProQuest LLC, 2021
In this dissertation I will present my work in both the fields of spintronics and physics education research. In the first section, I present a method to account for spin pumping in spin torque ferromagnetic resonance (ST-FMR) measurements. A spin current can be generated via the spin Hall effect (SHE), which is typically transverse to the charge…
Descriptors: Magnets, Electronics, Physics, Scientific Concepts
Redish, Edward F. – Physics Teacher, 2021
An important step in learning to use math in science is learning to see symbolic equations not just as calculational tools, but as ways of expressing fundamental relationships among physical quantities, of coding conceptual information, and of organizing physics knowledge structures. In this paper, I propose "anchor equations" as a…
Descriptors: Physics, Science Instruction, Teaching Methods, Equations (Mathematics)
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts