NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor – Educational and Psychological Measurement, 2017
Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…
Descriptors: Correlation, Goodness of Fit, Hierarchical Linear Modeling, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming – Educational and Psychological Measurement, 2015
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Descriptors: Structural Equation Models, Statistical Analysis, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wolf, Erika J.; Harrington, Kelly M.; Clark, Shaunna L.; Miller, Mark W. – Educational and Psychological Measurement, 2013
Determining sample size requirements for structural equation modeling (SEM) is a challenge often faced by investigators, peer reviewers, and grant writers. Recent years have seen a large increase in SEMs in the behavioral science literature, but consideration of sample size requirements for applied SEMs often relies on outdated rules-of-thumb.…
Descriptors: Sample Size, Structural Equation Models, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack – Educational and Psychological Measurement, 2014
The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…
Descriptors: Structural Equation Models, Brain Hemisphere Functions, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Feldt, Leonard S.; Charter, Richard A. – Educational and Psychological Measurement, 2006
Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…
Descriptors: Reliability, Monte Carlo Methods, Research Methodology, Alternative Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Hancock, Gregory R. – Educational and Psychological Measurement, 2006
In the common two-step structural equation modeling process, modifications are routinely made to the measurement portion of the model prior to assessing structural relations. The effect of such measurement model modifications on the structural parameter estimates, however, is not well known and is the subject of the current investigation. For a…
Descriptors: Error of Measurement, Evaluation Methods, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Brown, R. L. – Educational and Psychological Measurement, 1991
The effect that collapsing ordered polytomous variable scales has on structural equation measurement model parameter estimates was examined. Four parameter estimation procedures were investigated in a Monte Carlo study. Collapsing categories in ordered polytomous variables had little effect when latent projection procedures were used. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Fan, Xitao; Wang, Lin – Educational and Psychological Measurement, 1998
In this Monte Carlo study, the effects of four factors on structural equation modeling (SEM) fit indices and parameter estimates were investigated. The 14,400 samples generated were fitted to 3 SEM models with different degrees of model misspecification. Effects of data nonnormality, estimation method, and sample size are noted. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Mathematical Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Brown, R. L. – Educational and Psychological Measurement, 1992
A Monte Carlo study explores the robustness assumption in structural equation modeling of using a full information normal theory generalized least-squares estimation procedure on Type I censored data. The efficacy of the following proposed alternate estimation procedures is assessed: asymptotically distribution free estimator and a latent…
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Least Squares Statistics