NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Location
Tennessee1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Irina Braun; Scott E. Lewis; Nicole Graulich – Chemistry Education Research and Practice, 2025
The ability to reason with representations is pivotal for successful learning in Organic Chemistry and is closely linked to representational competence. Given the visual nature of this discipline, this comprises competency in extracting and processing relevant visual information. With regard to the resonance concept, proficiency in identifying…
Descriptors: Undergraduate Students, Organic Chemistry, Science Instruction, Pattern Recognition
Peer reviewed Peer reviewed
Direct linkDirect link
Munn, Carol – Journal of Computers in Mathematics and Science Teaching, 2021
This paper explores Computational Thinking (CT) through the experiences and interactions of sixth-grade students as they were engaging in a science lesson utilizing robotics. This robotics unit institutes the shifting from traditional to engaging hands-on activities coupled with CT skills that are exciting, intriguing, and inviting to students.…
Descriptors: Robotics, Grade 6, Units of Study, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ehsan, Hoda; Rehmat, Abeera P.; Cardella, Monica E. – Science and Children, 2019
Computational thinking can provide a basis for problem solving, for making evidence-based decisions, and for learning to code or create programs. Therefore, it is critical that all students across the K-12 continuum--including students in the early grades--have opportunities to begin developing problem solving and computational thinking skills.…
Descriptors: Teaching Methods, STEM Education, Computer Science Education, Thinking Skills
Munn, Carol A. – ProQuest LLC, 2020
This research study explored robotics as the catalyst for computational thinking (CT) by sixth-grade students as they are engaged in a science lesson. The interactions, understandings, and applications are discussed, along with the participants' connections and implementations of CT concepts (decomposition, abstraction, pattern recognition, and…
Descriptors: Robotics, Grade 6, Units of Study, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Basawapatna, Ashok – Educational Technology & Society, 2016
Simulation and modeling activities, a key point of computational thinking, are currently not being integrated into the science classroom. This paper describes a new visual programming tool entitled the Simulation Creation Toolkit. The Simulation Creation Toolkit is a high level pattern-based phenomenological approach to bringing rapid simulation…
Descriptors: Phenomenology, Computer Simulation, Thinking Skills, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Yadav, Aman; Krist, Christina; Good, Jon; Caeli, Elisa Nadire – Computer Science Education, 2018
A number of efforts have focused on preparing teachers to integrate CT within secondary disciplinary subject areas; however, there is little research on how CT ideas could be embedded within elementary subjects. We designed a professional development activity for elementary teachers to embed CT within science and examined how their understanding…
Descriptors: Computation, Thinking Skills, Elementary School Teachers, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Cowan, Kay W.; Cipriani, Sandra – Young Children, 2009
Visual intelligence is a key element in the thought processes of the most capable and creative among individuals, and this intelligence is closely related to analogical thinking, a learner's ability to make connections between prior knowledge and newly presented information. This article describes an approach to teaching scientific inquiry at…
Descriptors: Science Process Skills, Prior Learning, Visual Literacy, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Muller, Orna; Haberman, Bruria – Computer Science Education, 2008
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
Descriptors: Computer Science Education, Problem Solving, Computer Software, Pattern Recognition