NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory13
ACT Assessment1
SAT (College Admission Test)1
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wheatley, Christopher; Wells, James; Pritchard, David E.; Stewart, John – Physical Review Physics Education Research, 2022
The Force Concept Inventory (FCI) is a popular multiple-choice instrument used to measure a student's conceptual understanding of Newtonian mechanics. Recently, a network analytic technique called module analysis has been used to identify responses to the FCI and other conceptual instruments that are preferentially selected together by students;…
Descriptors: Physics, Science Instruction, Concept Formation, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Hong-Jeong; Im, Sungmin – Asia-Pacific Science Education, 2021
This study investigates pre-service teachers' beliefs about learning physics and explores how beliefs correlate with learning achievement as evidenced by conceptual understanding and grades in a year-long physics course. To investigate beliefs about learning physics, 14 second-year pre-service teachers in a teacher training program in South Korea…
Descriptors: Preservice Teachers, Student Attitudes, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Fabian Kieser; Peter Wulff; Jochen Kuhn; Stefan Küchemann – Physical Review Physics Education Research, 2023
Generative AI technologies such as large language models show novel potential to enhance educational research. For example, generative large language models were shown to be capable of solving quantitative reasoning tasks in physics and concept tests such as the Force Concept Inventory (FCI). Given the importance of such concept inventories for…
Descriptors: Physics, Science Instruction, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Jannis Weber; Thomas Wilhelm – Physical Review Physics Education Research, 2024
Students experience many difficulties learning the fundamental relationships in Newtonian mechanics, partly due to preexisting mental models that originate from their everyday lives. These preconceptions often persist even after instruction in mechanics and lead to a supposed incompatibility between physics lessons in school and personal…
Descriptors: Physics, Science Instruction, Scientific Concepts, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Fazio, Claudio; Battaglia, Onofrio R. – International Journal of Science and Mathematics Education, 2019
The Force Concept Inventory is a multiple-choice test and is one of the most popular and most analyzed concept inventories. It is used to investigate student understanding of Newtonian mechanics. A structured approach to data analysis can transform it in a "diagnostic" instrument that can validate inferences about student thinking. In…
Descriptors: Mechanics (Physics), Scientific Concepts, Concept Formation, College Freshmen
Peer reviewed Peer reviewed
Direct linkDirect link
Eaton, Philip; Willoughby, Shannon – Physical Review Physics Education Research, 2020
As targeted, single-conception curriculum research becomes more prevalent in physics education research (PER), the need for a more sophisticated statistical understanding of the conceptual surveys used becomes apparent. Previously, the factor structure of the Force Concept Inventory (FCI) was examined using exploratory factor analysis (EFA) and…
Descriptors: Item Response Theory, Factor Analysis, Factor Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, John; Drury, Byron; Wells, James; Adair, Aaron; Henderson, Rachel; Ma, Yunfei; Perez-Lemonche, Ángel; Pritchard, David – Physical Review Physics Education Research, 2021
This study reports an analysis of the Force Concept Inventory (FCI) using item response curves (IRC)--the fraction of students selecting each response to an item as a function of their total score. Three large samples (N = 9606, 4360, and 1439) of calculus-based physics students were analyzed. These were drawn from three land-grant institutions…
Descriptors: Physics, Science Instruction, Scientific Concepts, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cinite, Ilva; Barinovs, Girts – International Baltic Symposium on Science and Technology Education, 2021
Education research has repeatedly shown that active learning in physics is pedagogically more efficient than traditional lecture courses. Widespread application of the active learning is slowed down by the lack of data on the performance of the active learning in widely varying circumstances of different educational systems. We measured the level…
Descriptors: Foreign Countries, Physics, Scientific Concepts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Reinhard, Aaron; Felleson, Alex; Turner, Paula C.; Green, Maxwell – Physical Review Physics Education Research, 2022
We studied the impact of metacognitive reflections on recently-completed work as a way to improve the retention of newly learned problem-solving techniques. Students video recorded themselves talking through problems immediately after finishing them, completed ongoing problem-solving strategy maps or problem-sorting exercises, and filled out…
Descriptors: Metacognition, Problem Solving, Retention (Psychology), Video Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cinite, Ilva; Barinovs, Girts – International Baltic Symposium on Science and Technology Education, 2019
The purpose of this study is to measure the development of students' conceptual understanding of basic physics concepts at introductory physics courses at the University of Latvia. The authors of the research have translated, tested and verified the Force Concept Inventory and other Concept Inventories in the context of Latvian education system.…
Descriptors: Learning Processes, Undergraduate Students, Physics, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Syuhendri Syuhendri – Journal of Baltic Science Education, 2017
The purpose of this research was to investigate the effectiveness of conceptual change learning approach based on conceptual change model over traditional instruction on the improvement of physics education undergraduate students' conceptual understanding in Newtonian mechanics. A quasi experimental research method with pre-test and post-test…
Descriptors: Scientific Concepts, Concept Formation, Science Instruction, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hairan, Abdul Manan; Abdullah, Nazlinda; Husin, Abu Hassan – European Journal of Physics Education, 2019
In this paper, the level of conceptual understanding of Newtonian mechanics among Afghan school and university students in Kabul, Afghanistan was investigated. This study employed a quantitative descriptive survey method where the Pashto version of the Force Concept Inventory (FCI) was given to a random sample of 216 students from two schools and…
Descriptors: Concept Formation, Comprehension, Foreign Countries, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Henderson, Rachel; Stewart, John; Traxler, Adrienne – Physical Review Physics Education Research, 2019
Over the last decade, the "gender gap" in physics conceptual inventory scores has been extensively studied by the physics education research community. Researchers have identified many factors that influence the overall differences in post-test scores between men and women. More recently, it has been shown that the Force Concept…
Descriptors: Gender Differences, Scientific Concepts, Physics, Science Instruction