NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jia Liu; Xiangbin Meng; Gongjun Xu; Wei Gao; Ningzhong Shi – Grantee Submission, 2024
In this paper, we develop a mixed stochastic approximation expectation-maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four-parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of…
Descriptors: Algorithms, Achievement Tests, International Assessment, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Jia Liu; Xiangbin Meng; Gongjun Xu; Wei Gao; Ningzhong Shi – Journal of Educational Measurement, 2024
In this paper, we develop a mixed stochastic approximation expectation-maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four-parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of…
Descriptors: Algorithms, Achievement Tests, Foreign Countries, International Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory