Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Educational and Psychological… | 1 |
Grantee Submission | 1 |
Journal of Computer Assisted… | 1 |
Journal of Educational Data… | 1 |
Journal of Educational… | 1 |
Journal of Educational and… | 1 |
Author
Andersen, Nico | 1 |
Bolsinova, Maria | 1 |
Cai, Li | 1 |
Chun Wang | 1 |
Goldhammer, Frank | 1 |
Jing Lu | 1 |
Jiwei Zhang | 1 |
Liaw, Yuan-Ling | 1 |
Lundgren, Erik | 1 |
Rutkowski, David | 1 |
Rutkowski, Leslie | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 3 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 5 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 6 |
Law School Admission Test | 1 |
What Works Clearinghouse Rating
Andersen, Nico; Zehner, Fabian; Goldhammer, Frank – Journal of Computer Assisted Learning, 2023
Background: In the context of large-scale educational assessments, the effort required to code open-ended text responses is considerably more expensive and time-consuming than the evaluation of multiple-choice responses because it requires trained personnel and long manual coding sessions. Aim: Our semi-supervised coding method eco (exploring…
Descriptors: Foreign Countries, Achievement Tests, International Assessment, Secondary School Students
Lundgren, Erik – Journal of Educational Data Mining, 2022
Response process data have the potential to provide a rich description of test-takers' thinking processes. However, retrieving insights from these data presents a challenge for educational assessments and educational data mining as they are complex and not well annotated. The present study addresses this challenge by developing a computational…
Descriptors: Problem Solving, Classification, Accuracy, Foreign Countries
A Sequential Bayesian Changepoint Detection Procedure for Aberrant Behaviors in Computerized Testing
Jing Lu; Chun Wang; Jiwei Zhang; Xue Wang – Grantee Submission, 2023
Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is pivotal to properly differentiate examinees' aberrant behaviors from solution behavior to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to…
Descriptors: Bayesian Statistics, Behavior Patterns, Computer Assisted Testing, Accuracy
Tijmstra, Jesper; Bolsinova, Maria; Liaw, Yuan-Ling; Rutkowski, Leslie; Rutkowski, David – Journal of Educational Measurement, 2020
Although the root-mean squared deviation (RMSD) is a popular statistical measure for evaluating country-specific item-level misfit (i.e., differential item functioning [DIF]) in international large-scale assessment, this paper shows that its sensitivity to detect misfit may depend strongly on the proficiency distribution of the considered…
Descriptors: Test Items, Goodness of Fit, Probability, Accuracy
Yang, Ji Seung; Zheng, Xiaying – Journal of Educational and Behavioral Statistics, 2018
The purpose of this article is to introduce and review the capability and performance of the Stata item response theory (IRT) package that is available from Stata v.14, 2015. Using a simulated data set and a publicly available item response data set extracted from Programme of International Student Assessment, we review the IRT package from…
Descriptors: Item Response Theory, Item Analysis, Computer Software, Statistical Analysis
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao – Educational and Psychological Measurement, 2013
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Descriptors: Item Response Theory, Computation, Matrices, Statistical Inference