NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A. – Journal of Educational Measurement, 2020
Multilevel bifactor item response theory (IRT) models are commonly used to account for features of the data that are related to the sampling and measurement processes used to gather those data. These models conventionally make assumptions about the portions of the data structure that represent these features. Unfortunately, when data violate these…
Descriptors: Bayesian Statistics, Item Response Theory, Achievement Tests, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu – Educational and Psychological Measurement, 2020
In educational assessments and achievement tests, test developers and administrators commonly assume that test-takers attempt all test items with full effort and leave no blank responses with unplanned missing values. However, aberrant response behavior--such as performance decline, dropping out beyond a certain point, and skipping certain items…
Descriptors: Item Response Theory, Response Style (Tests), Test Items, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trendtel, Matthias; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
A multidimensional Bayesian item response model is proposed for modeling item position effects. The first dimension corresponds to the ability that is to be measured; the second dimension represents a factor that allows for individual differences in item position effects called persistence. This model allows for nonlinear item position effects on…
Descriptors: Bayesian Statistics, Item Response Theory, Test Items, Test Format
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Jing; Wang, Chun – Journal of Educational Measurement, 2020
Item nonresponses are prevalent in standardized testing. They happen either when students fail to reach the end of a test due to a time limit or quitting, or when students choose to omit some items strategically. Oftentimes, item nonresponses are nonrandom, and hence, the missing data mechanism needs to be properly modeled. In this paper, we…
Descriptors: Item Response Theory, Test Items, Standardized Tests, Responses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Hansen, Mark; Cai, Li – Educational and Psychological Measurement, 2012
Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…
Descriptors: Item Response Theory, Scores, Statistical Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Stiller, Jurik; Hartmann, Stefan; Mathesius, Sabrina; Straube, Philipp; Tiemann, Rüdiger; Nordmeier, Volkhard; Krüger, Dirk; Upmeier zu Belzen, Annette – Assessment & Evaluation in Higher Education, 2016
The aim of this study was to improve the criterion-related test score interpretation of a text-based assessment of scientific reasoning competencies in higher education by evaluating factors which systematically affect item difficulty. To provide evidence about the specific demands which test items of various difficulty make on pre-service…
Descriptors: Logical Thinking, Scientific Concepts, Difficulty Level, Test Items