NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abulela, Mohammed A. A.; Harwell, Michael M. – Educational Sciences: Theory and Practice, 2020
Data analysis is a significant methodological component when conducting quantitative education studies. Guidelines for conducting data analyses in quantitative education studies are common but often underemphasize four important methodological components impacting the validity of inferences: quality of constructed measures, proper handling of…
Descriptors: Educational Research, Educational Researchers, Novices, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Furno, Marilena – Journal of Educational and Behavioral Statistics, 2011
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Descriptors: Goodness of Fit, Statistical Inference, Regression (Statistics), Least Squares Statistics