Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Education Level
Elementary Secondary Education | 2 |
Elementary Education | 1 |
Grade 4 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 3 |
Students Evaluation of… | 1 |
What Works Clearinghouse Rating
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Lee, HyeSun – Applied Measurement in Education, 2018
The current simulation study examined the effects of Item Parameter Drift (IPD) occurring in a short scale on parameter estimates in multilevel models where scores from a scale were employed as a time-varying predictor to account for outcome scores. Five factors, including three decisions about IPD, were considered for simulation conditions. It…
Descriptors: Test Items, Hierarchical Linear Modeling, Predictor Variables, Scores
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability