NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 60 results Save | Export
Peer reviewed Peer reviewed
Scamehorn, John F. – Chemical Engineering Education, 1984
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Soong, David S. – Chemical Engineering Education, 1985
A special-topics course in polymer processing has acquired regular course status. Course goals, content (including such new topics as polymer applications in microelectronics), and selected term projects are described. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Van Zee, John – Chemical Engineering Education, 1985
Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Zygourakis, Kyriacos – Chemical Engineering Education, 1984
The organization and contents of a linear algebra course for chemical engineers are described. The course, which emphasizes both abstraction and application, meets twice a week for two hours and runs largely as a lecture, although active student participation is encouraged by frequent questions from the instructor. (JN)
Descriptors: Algebra, Chemical Engineering, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Moser, William R. – Chemical Engineering Education, 1985
Describes a course that provides students with a fundamental understanding of the chemical, catalytic, and engineering sciences related to the chemical reactions taking place in a variety of reactors of different configurations. Also describes the eight major lecture topics, course examinations, and term papers. The course schedule is included.…
Descriptors: Chemical Engineering, Chemical Reactions, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Williams, Dennis C.; Tarrer, A. Ray – Chemical Engineering Education, 1986
The process control sequence at Auburn University consists of two four-credit hour lecture courses and a two-credit hour laboratory course. Descriptions of the courses and of the laboratory are provided. Various comments about the sequence are included. Authors report that students are better prepared in process control under this sequence. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Shah, D. B. – Chemical Engineering Education, 1984
Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Belfort, Georges – Chemical Engineering Education, 1985
Describes a course designed to: use approaches developed in the study of transport phenomena as a unifying foundation; provide students with an understanding of the design and operation of these proceses; and review particular advantages and limitations of the processes being studied. Course content and teaching methods are included. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Herskowitz, M. – Chemical Engineering Education, 1985
Describes a course (given to junior/senior students with strong background in thermodynamics and transport phenomena) that covers the theoretical and practical aspects of properties estimation. An outline for the course is included. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Radovic, Ljubisa R. – Chemical Engineering Education, 1985
Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…
Descriptors: Chemical Engineering, Coal, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Marnell, Paul – Chemical Engineering Education, 1984
Describes a year-long graduate plant design course. The course provides students with an appreciation of the profit motive that drives business activity, the role of the chemical engineer in achieving this goal, and historical and contemporary perspectives on chemical engineering practice. (JN)
Descriptors: Chemical Engineering, Course Descriptions, Educational Objectives, Engineering Education
Peer reviewed Peer reviewed
White, Mark G. – Chemical Engineering Education, 1984
A video-based format was used during a graduate seminar course designed to educate students on the nature of catalysis, to help transfer information among students working on similar problems, and to improve communication skills. The mechanics of and student reaction to this seminar course are discussed. (JN)
Descriptors: Audiovisual Instruction, Chemical Engineering, Course Descriptions, Course Objectives
Peer reviewed Peer reviewed
Bailey, J. E.; Ollis, D. F. – Chemical Engineering Education, 1985
Provides: (1) a glossary of terms used in biochemical engineering; (2) a list of key developments in the field; and (3) emphases placed in 15 topic areas in a course restructured on the basis of these developments. Topic areas include enzyme kinetics/applications, genetics and microbial control, transport phenomena, and others. (JN)
Descriptors: Biochemistry, Chemical Engineering, Course Descriptions, DNA
Peer reviewed Peer reviewed
Graham, B. P.; Jutan, A. – Chemical Engineering Education, 1985
A one-month graduate course on time series analysis is offered in the department of chemical engineering at the University of Queensland (Australia). Describes the course, which is based on an interactive graphics time series identification and modelling computer package (TSIM). Also describes time-series analysis procedure and the TSIM package.…
Descriptors: Chemical Engineering, Computer Software, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Sullivan, Ralda M. – Chemical Engineering Education, 1986
University of California's (Berkeley) chemical engineering department developed an in-house course as a prerequisite to senior laboratory (where students must write reports and make oral presentations). The course, which focuses on technical communication skills, is described, with special reference to instructional strategies used and structure…
Descriptors: Chemical Engineering, Communication Skills, Course Descriptions, Engineering Education
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4