Descriptor
Source
Journal of Chemical Education | 7 |
Journal of Research in… | 3 |
Chemical Engineering Education | 1 |
Engineering Education | 1 |
Journal of Biological… | 1 |
Physics Teacher | 1 |
Research in Science and… | 1 |
Science Education | 1 |
Author
Publication Type
Journal Articles | 16 |
Reports - Descriptive | 11 |
Opinion Papers | 5 |
Reports - Research | 5 |
Guides - Classroom - Teacher | 2 |
Computer Programs | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Practitioners | 16 |
Teachers | 6 |
Researchers | 4 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Group Assessment of Logical… | 1 |
Group Embedded Figures Test | 1 |
What Works Clearinghouse Rating

Thomson, Norman; Stewart, James – Journal of Biological Education, 1985
Explains an algorithm which details procedures for solving a broad class of genetics problems common to pre-college biology. Several flow charts (developed from the algorithm) are given with sample questions and suggestions for student use. Conclusions are based on the authors' research (which includes student interviews and textbook analyses).…
Descriptors: Algorithms, Biology, Genetics, Learning Strategies

Frank, David V.; And Others – Journal of Chemical Education, 1987
Discusses the differences between problems and exercises in chemistry, and some of the difficulties that arise when the same methods are used to solve both. Proposes that algorithms are excellent models for solving exercises. Argues that algorithms not be used for solving problems. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education

Middlecamp, Catherine; Kean, Elizabeth – Journal of Chemical Education, 1987
Discusses the difference between a generic chemistry problem (one which can be solved using an algorithm) and a harder chemistry problem (one for which there is no algorithm). Encourages teachers to help students recognize these categories of problems so they will be better able to find solutions. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education

Schrader, C. L. – Journal of Chemical Education, 1987
Discusses the differences between problems and exercises, the levels of thinking required to solve them, and the roles that algorithms can play in helping chemistry students perform these tasks. Proposes that students be taught the logic of algorithms, their characteristics, and how to invent their own algorithms. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education

Stewart, Jim; Dale, Michael – Science Education, 1989
Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)
Descriptors: Algorithms, Biology, Concept Formation, Fundamental Concepts

Carter, Carolyn S.; And Others – Journal of Research in Science Teaching, 1987
Reports on a study in which two spatial tests were given to science and engineering majors and to students in nursing and agriculture at Purdue University (Indiana). Scores from the tests consistently contributed a small but significant amount of success on measures of performance in chemistry. (TW)
Descriptors: Academic Achievement, Agricultural Education, Algorithms, Chemistry

Hoggard, Franklin R. – Journal of Chemical Education, 1987
Suggests a method for solving verbal problems in chemistry using a linguistic algorithm that is partly adapted from two artificial intelligence languages. Provides examples of problems solved using the mental concepts of translation, rotation, mirror image symmetry, superpositioning, disjoininng, and conjoining. (TW)
Descriptors: Algorithms, Artificial Intelligence, Chemical Nomenclature, Chemical Reactions

Pribyl, Jeffrey R.; Bodner, George M. – Journal of Research in Science Teaching, 1987
Reports on a study which examined the relationship between spatial ability and performance in organic chemistry. Results indicated that students with high spatial scores did significantly better on questions requiring problem solving skills, as well as on those requiring the mental manipulation of two-dimensional representations of a molecule. (TW)
Descriptors: Academic Achievement, Algorithms, Chemical Reactions, College Science

Joye, Donald D.; Koko, F. William Jr. – Chemical Engineering Education, 1988
Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)
Descriptors: Algorithms, Chemical Engineering, Chemistry, College Science

Bodner, George M. – Journal of Chemical Education, 1987
Differentiates between problems, exercises and algorithms. Discusses the role of algorithms in solving problems and exercises in chemistry. Suggests that very real differences exist between solving problems and exercises, and that problem solving steps can be and should be taught in chemistry education. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education

Bodner, George M.; McMillen, Theresa L. B. – Journal of Research in Science Teaching, 1986
Examines the hypothesis that there are preliminary stages in problem solving that are often neglected in teaching chemistry. Discusses correlations calculated between the student's ability to handle disembedding and cognitive restructuring tasks in the spatial domain and ability to solve chemistry problems. (TW)
Descriptors: Algorithms, Chemistry, Cognitive Processes, College Science

De Jong, Marvin L. – Physics Teacher, 1992
Studies the simple dynamical system of the pendulum and the chaotic behavior that occurs when the pendulum is both damped and driven. Provides an algorithm and BASIC program for the numerical solution to the differential equations encountered in the discussion. (MDH)
Descriptors: Algorithms, Chaos Theory, Computer Assisted Instruction, Differential Equations

Pickering, Miles – Journal of Chemical Education, 1987
Discusses some of the difficulties involved with chemistry laboratory experiences and some laboratory manuals. Cites studies that indicate that part of the difficulty can be attributed to constraints relating to the short-term memory of the operational information and the assumption that students have a certain level of knowledge. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education

Niaz, Mansoor; Robinson, William R. – Research in Science and Technological Education, 1992
Compares performances of students on gas-law problems that require two distinct approaches, either the algorithmic technique or the conceptual gestalt. Indicates that student effectiveness is considerably different utilizing each approach and that training or experience with the algorithm process should not be expected to facilitate the…
Descriptors: Algorithms, Chemistry, Cognitive Ability, Cognitive Style
Scanlan, David – Engineering Education, 1988
Notes that almost all computer engineering textbooks present algorithms using only verbal methods. Poses that engineering students' ability to handle graphic representation is crucial yet information is presented verbally. Summarizes the results of 12 replications on learner preference for graphic or verbal algorithmic techniques. (MVL)
Descriptors: Algorithms, Cognitive Processes, College Science, Curriculum Design
Previous Page | Next Page ยป
Pages: 1 | 2