NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gagne, Phill; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Simulation researchers are sometimes faced with the need to use multiple statistical software packages in the process of conducting their research, potentially having to go between software packages manually. This can be a tedious and time-consuming process that generally motivates researchers to use fewer replications in their simulations than…
Descriptors: Structural Equation Models, Computer Software, Researchers, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z.; Puma, Mike; Deke, John – National Center for Education Evaluation and Regional Assistance, 2014
This report summarizes the complex research literature on quantitative methods for assessing how impacts of educational interventions on instructional practices and student learning differ across students, educators, and schools. It also provides technical guidance about the use and interpretation of these methods. The research topics addressed…
Descriptors: Statistical Analysis, Evaluation Methods, Educational Research, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Fong; Lee, Gloria K.; Lee, Eun-Jeong; Kubota, Coleen; Allen, Chase A. – Rehabilitation Counseling Bulletin, 2007
Structural equation modeling (SEM) has become increasingly popular in counseling, psychology, and rehabilitation research. The purpose of this article is to provide an overview of the basic concepts and applications of SEM in rehabilitation counseling research using the AMOS statistical software program.
Descriptors: Structural Equation Models, Rehabilitation Counseling, Computer Software, Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hayduk, Leslie A.; Robinson, Hannah Pazderka; Cummings, Greta G.; Boadu, Kwame; Verbeek, Eric L.; Perks, Thomas A. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Researchers using structural equation modeling (SEM) aspire to learn about the world by seeking models with causal specifications that match the causal forces extant in the world. This quest for a model matching existing worldly causal forces constitutes an ontology that orients, or perhaps reorients, thinking about measurement validity. This…
Descriptors: Validity, Structural Equation Models, Reliability, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Geiser, Christian; Eid, Michael; Nussbeck, Fridtjof W. – Psychological Methods, 2008
In a recent article, A. Maydeu-Olivares and D. L. Coffman (2006, see EJ751121) presented a random intercept factor approach for modeling idiosyncratic response styles in questionnaire data and compared this approach with competing confirmatory factor analysis models. Among the competing models was the CT-C(M-1) model (M. Eid, 2000). In an…
Descriptors: Factor Structure, Factor Analysis, Structural Equation Models, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Hayashi, Kentaro; Bentler, Peter M.; Yuan, Ke-Hai – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In the exploratory factor analysis, when the number of factors exceeds the true number of factors, the likelihood ratio test statistic no longer follows the chi-square distribution due to a problem of rank deficiency and nonidentifiability of model parameters. As a result, decisions regarding the number of factors may be incorrect. Several…
Descriptors: Researchers, Factor Analysis, Factor Structure, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Ilhyeok; Schutz, Robert W. – Research Quarterly for Exercise and Sport, 2005
The purpose of this paper is to introduce the Latent Growth Model (LGM) to researchers in exercise and sport science. Although the LGM has several merits over traditional analysis techniques in analyzing change and was first introduced almost 20 years ago, it is still underused in exercise and sport science research. This statistical model can be…
Descriptors: Physical Fitness, Structural Equation Models, Exercise Physiology, Measurement Techniques
Peer reviewed Peer reviewed
Moore, Alan D. – Remedial and Special Education, 1995
This article suggests the use of structural equation modeling in special education research, to analyze multivariate data from both nonexperimental and experimental research. It combines a structural model linking latent variables and a measurement model linking observed variables with latent variables. (Author/DB)
Descriptors: Data Analysis, Disabilities, Educational Research, Elementary Secondary Education
Peer reviewed Peer reviewed
Wong, Ngai-Ying; Lin, Wen-Ying; Watkins, David – Educational Psychology, 1996
Analyzes responses to a questionnaire from 10 samples of primary and secondary school students from Nigeria, Zimbabwe, Malaysia, Beijing, Hong Kong, and Canada. The questionnaire covered learning strategies, approaches, and motivation. These data were then analyzed using six different structural equation models. Includes discussion of the models…
Descriptors: Educational Experience, Factor Analysis, Foreign Countries, Learning Experience