Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
Author
Publication Type
Education Level
Elementary Secondary Education | 2 |
Higher Education | 2 |
Elementary Education | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 44 |
Practitioners | 13 |
Teachers | 8 |
Students | 1 |
Location
Canada (Edmonton) | 1 |
Ohio | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Porter, Kristin E. – Journal of Research on Educational Effectiveness, 2018
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Porter, Kristin E. – Grantee Submission, 2017
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Porter, Kristin E. – MDRC, 2016
In education research and in many other fields, researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Swank, Jacqueline M.; Mullen, Patrick R. – Measurement and Evaluation in Counseling and Development, 2017
The article serves as a guide for researchers in developing evidence of validity using bivariate correlations, specifically construct validity. The authors outline the steps for calculating and interpreting bivariate correlations. Additionally, they provide an illustrative example and discuss the implications.
Descriptors: Correlation, Construct Validity, Guidelines, Data Interpretation
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
Descriptors: Error of Measurement, Monte Carlo Methods, Data Collection, Simulation
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Schochet, Peter Z.; Puma, Mike; Deke, John – National Center for Education Evaluation and Regional Assistance, 2014
This report summarizes the complex research literature on quantitative methods for assessing how impacts of educational interventions on instructional practices and student learning differ across students, educators, and schools. It also provides technical guidance about the use and interpretation of these methods. The research topics addressed…
Descriptors: Statistical Analysis, Evaluation Methods, Educational Research, Intervention
Finch, Holmes; Monahan, Patrick – Applied Measurement in Education, 2008
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Descriptors: Monte Carlo Methods, Factor Analysis, Generalization, Methods
Usman, Muhammad; Singh, Amit – Journal of STEM Education: Innovations and Research, 2011
The beginning of modern science is marked by efforts of pioneers to understand the natural world using a quantitative approach. As Galileo wrote, "the book of nature is written in the language of mathematics". The traditional undergraduate course curriculum is heavily focused on individual disciplines like biology, physics, chemistry,…
Descriptors: Undergraduate Study, Interdisciplinary Approach, Biology, Sciences
Jo, Booil; Asparouhov, Tihomir; Muthen, Bengt O.; Ialongo, Nicholas S.; Brown, C. Hendricks – Psychological Methods, 2008
Cluster randomized trials (CRTs) have been widely used in field experiments treating a cluster of individuals as the unit of randomization. This study focused particularly on situations where CRTs are accompanied by a common complication, namely, treatment noncompliance or, more generally, intervention nonadherence. In CRTs, compliance may be…
Descriptors: Individual Characteristics, Intervention, Statistical Inference, Inferences
DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J. – Psychometrika, 2008
A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…
Descriptors: Monte Carlo Methods, Rating Scales, Computation, Multidimensional Scaling
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
del Pino, Guido; San Martin, Ernesto; Gonzalez, Jorge; De Boeck, Paul – Psychometrika, 2008
This paper analyzes the sum score based (SSB) formulation of the Rasch model, where items and sum scores of persons are considered as factors in a logit model. After reviewing the evolution leading to the equality between their maximum likelihood estimates, the SSB model is then discussed from the point of view of pseudo-likelihood and of…
Descriptors: Computation, Models, Scores, Evaluation Methods
Wright, Robert J.; Ellemor-Collins, David; Tabor, Pamela D. – SAGE Publications (CA), 2011
This fourth book in the Mathematics Recovery series equips teachers with detailed pedagogical knowledge and resources for teaching number to 7 to 11-year olds. Drawing on extensive programs of research, curriculum development, and teacher development, the book offers a coherent, up-to-date approach emphasizing computational fluency and the…
Descriptors: Curriculum Development, Intervention, Mental Computation, Special Education