NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers11
Students1
Teachers1
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
Descriptors: Error of Measurement, Monte Carlo Methods, Data Collection, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes – Journal of Educational Measurement, 2008
Missing data are a common problem in a variety of measurement settings, including responses to items on both cognitive and affective assessments. Researchers have shown that such missing data may create problems in the estimation of item difficulty parameters in the Item Response Theory (IRT) context, particularly if they are ignored. At the same…
Descriptors: Simulation, Item Response Theory, Researchers, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J. – Psychometrika, 2008
A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…
Descriptors: Monte Carlo Methods, Rating Scales, Computation, Multidimensional Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Monahan, Patrick – Applied Measurement in Education, 2008
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Descriptors: Monte Carlo Methods, Factor Analysis, Generalization, Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jo, Booil; Asparouhov, Tihomir; Muthen, Bengt O.; Ialongo, Nicholas S.; Brown, C. Hendricks – Psychological Methods, 2008
Cluster randomized trials (CRTs) have been widely used in field experiments treating a cluster of individuals as the unit of randomization. This study focused particularly on situations where CRTs are accompanied by a common complication, namely, treatment noncompliance or, more generally, intervention nonadherence. In CRTs, compliance may be…
Descriptors: Individual Characteristics, Intervention, Statistical Inference, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Hartig, Johannes; Holzel, Britta; Moosbrugger, Helfried – Multivariate Behavioral Research, 2007
Numerous studies have shown increasing item reliabilities as an effect of the item position in personality scales. Traditionally, these context effects are analyzed based on item-total correlations. This approach neglects that trends in item reliabilities can be caused either by an increase in true score variance or by a decrease in error…
Descriptors: True Scores, Error of Measurement, Structural Equation Models, Simulation
Ohlsson, Stellan; Rees, Ernest – 1988
Children learn arithmetic procedures by rote, rather than by constructing them with an understanding of numbers. Rote learning produces lack of flexibility, nonsensical errors, and other difficulties. Proposed is a theory of conceptual understanding and its role in learning and executing arithmetic procedures. The basic hypothesis is that…
Descriptors: Computation, Computer Simulation, Concept Formation, Educational Research
Peer reviewed Peer reviewed
Ohlsson, Stellan; And Others – Journal for Research in Mathematics Education, 1992
Proposes a theory of cognitive processes in doing and learning place value arithmetic. Discusses a computer model that simulates the learning of multicolumn subtraction under one-on-one tutoring to measure the relative difficulty of two methods of subtraction. The model predicts that regrouping is more difficult to learn than an alternative…
Descriptors: Arithmetic, Cognitive Measurement, Cognitive Processes, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Caulkins, Jonathan P. – Journal of Policy Analysis and Management, 2002
In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…
Descriptors: Statistical Inference, Models, Policy Analysis, Sampling