NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 72 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin – Asia Pacific Education Review, 2024
Causal mediation analysis has gained increasing attention in recent years. This article guides empirical researchers through the concepts and challenges of causal mediation analysis. I first clarify the difference between traditional and causal mediation analysis and highlight the importance of adjusting for the treatment-by-mediator interaction…
Descriptors: Causal Models, Mediation Theory, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Heungsun Hwang; Gyeongcheol Cho; Hosung Choo – Structural Equation Modeling: A Multidisciplinary Journal, 2024
GSCA Pro is free, user-friendly software for generalized structured component analysis structural equation modeling (GSCA-SEM), which implements three statistical methods for estimating models with factors only, models with components only, and models with both factors and components. This tutorial aims to provide step-by-step illustrations of how…
Descriptors: Research Tools, Structural Equation Models, Computer Software, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Ferguson, Sarah L.; Moore, E. Whitney G.; Hull, Darrell M. – International Journal of Behavioral Development, 2020
The present guide provides a practical guide to conducting latent profile analysis (LPA) in the Mplus software system. This guide is intended for researchers familiar with some latent variable modeling but not LPA specifically. A general procedure for conducting LPA is provided in six steps: (a) data inspection, (b) iterative evaluation of models,…
Descriptors: Statistical Analysis, Computer Software, Data Analysis, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aybek, Eren Can; Demirtasli, R. Nukhet – International Journal of Research in Education and Science, 2017
This article aims to provide a theoretical framework for computerized adaptive tests (CAT) and item response theory models for polytomous items. Besides that, it aims to introduce the simulation and live CAT software to the related researchers. Computerized adaptive test algorithm, assumptions of item response theory models, nominal response…
Descriptors: Computer Assisted Testing, Adaptive Testing, Item Response Theory, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Azevedo, Ana, Ed.; Azevedo, José, Ed. – IGI Global, 2019
E-assessments of students profoundly influence their motivation and play a key role in the educational process. Adapting assessment techniques to current technological advancements allows for effective pedagogical practices, learning processes, and student engagement. The "Handbook of Research on E-Assessment in Higher Education"…
Descriptors: Higher Education, Computer Assisted Testing, Multiple Choice Tests, Guides
Peer reviewed Peer reviewed
Direct linkDirect link
Klugkist, Irene; Laudy, Olav; Hoijtink, Herbert – Psychological Methods, 2010
In this article, a Bayesian model selection approach is introduced that can select the best of a set of inequality and equality constrained hypotheses for contingency tables. The hypotheses are presented in terms of cell probabilities allowing researchers to test (in)equality constrained hypotheses in a format that is directly related to the data.…
Descriptors: Bayesian Statistics, Models, Selection, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Gagne, Phill; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Simulation researchers are sometimes faced with the need to use multiple statistical software packages in the process of conducting their research, potentially having to go between software packages manually. This can be a tedious and time-consuming process that generally motivates researchers to use fewer replications in their simulations than…
Descriptors: Structural Equation Models, Computer Software, Researchers, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Fong; Lee, Gloria K.; Lee, Eun-Jeong; Kubota, Coleen; Allen, Chase A. – Rehabilitation Counseling Bulletin, 2007
Structural equation modeling (SEM) has become increasingly popular in counseling, psychology, and rehabilitation research. The purpose of this article is to provide an overview of the basic concepts and applications of SEM in rehabilitation counseling research using the AMOS statistical software program.
Descriptors: Structural Equation Models, Rehabilitation Counseling, Computer Software, Research
Nering, Michael L., Ed.; Ostini, Remo, Ed. – Routledge, Taylor & Francis Group, 2010
This comprehensive "Handbook" focuses on the most used polytomous item response theory (IRT) models. These models help us understand the interaction between examinees and test questions where the questions have various response categories. The book reviews all of the major models and includes discussions about how and where the models…
Descriptors: Guides, Item Response Theory, Test Items, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Steffens, Karl – Technology, Pedagogy and Education, 2008
Self-regulated learning (SRL) has become an important topic in education during the last three decades. At the same time, advances in technology have made it possible to create complex Technology Enhanced Learning Environments (TELEs). While there is some evidence that these TELEs have the potential to foster SRL, there is only little research on…
Descriptors: Technology Integration, Educational Technology, Models, Research Methodology
Peer reviewed Peer reviewed
Keith, Timothy Z. – Remedial and Special Education (RASE), 1993
This overview of nonexperimental causal research methods focuses on latent variable structural equation modeling using the LISREL computer program. An extended example in special education is used to present LISREL as an extension of structural equations analysis (path analysis) and as a method of reducing the effects of error in research.…
Descriptors: Causal Models, Computer Oriented Programs, Computer Software, Data Analysis
Simkin, Mark G. – Collegiate Microcomputer, 1986
Uses a prototype decision problem to demonstrate usefulness of an electronic spreadsheet in analyzing decision trees and performing other types of decision analysis. Advantages and disadvantages of implementing operations research/management science models on electronic spreadsheets are discussed and some do's and don't's are suggested. (Author)
Descriptors: Computer Software, Decision Making, Models, Operations Research
Marion, Rodger; Niebuhr, Bruce R. – Collegiate Microcomputer, 1986
Discusses an algorithm for developing problem solving simulations using microcomputers, and describes both the components of the simulation algorithm and the user interface. Examples of simulation and programming methods are presented. (MBR)
Descriptors: Algorithms, Computer Simulation, Computer Software, Design
Kish, Leslie – 1989
A brief, practical overview of "design effects" (DEFFs) is presented for users of the results of sample surveys. The overview is intended to help such users to determine how and when to use DEFFs and to compute them correctly. DEFFs are needed only for inferential statistics, not for descriptive statistics. When the selections for…
Descriptors: Computer Software, Error of Measurement, Mathematical Models, Research Design
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5