NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Yoon, Myeongsun; Millsap, Roger E. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In testing factorial invariance, researchers have often used a reference variable strategy in which the factor loading for a variable (i.e., reference variable) is fixed to 1 for identification. This commonly used method can be misleading if the chosen reference variable is actually a noninvariant item. This simulation study suggests an…
Descriptors: Item Analysis, Testing, Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods
Robey, Randall R.; Barcikowski, Robert S. – 1987
The mixed model analysis of variance assumes a mathematical property known as sphericity. Several preliminary tests have been proposed to detect departures from the sphericity assumption. The logic of the preliminary testing procedure is to conduct the mixed model analysis of variance if the preliminary test suggests that the sphericity assumption…
Descriptors: Analysis of Variance, Error of Measurement, Hypothesis Testing, Mathematical Models
Tracz, Susan M.; Elmore, Patricia B. – 1985
Meta-analysis is a technique for combining the summary statistics from previously conducted research studies to indicate the direction of results and provide an index of the magnitude of effect size. This paper focuses on the effect of the violation of the assumption of independence (that the value of any included statistic is in no way…
Descriptors: Correlation, Effect Size, Mathematical Models, Meta Analysis
Levy, Roy; Mislevy, Robert J. – US Department of Education, 2004
The challenges of modeling students' performance in simulation-based assessments include accounting for multiple aspects of knowledge and skill that arise in different situations and the conditional dependencies among multiple aspects of performance in a complex assessment. This paper describes a Bayesian approach to modeling and estimating…
Descriptors: Probability, Markov Processes, Monte Carlo Methods, Bayesian Statistics
Jones, Patricia B.; And Others – 1987
In order to determine the effectiveness of multidimensional scaling (MDS) in recovering the dimensionality of a set of dichotomously-scored items, data were simulated in one, two, and three dimensions for a variety of correlations with the underlying latent trait. Similarity matrices were constructed from these data using three margin-sensitive…
Descriptors: Cluster Analysis, Correlation, Difficulty Level, Error of Measurement
Samejima, Fumiko – 1986
Item analysis data fitting the normal ogive model were simulated in order to investigate the problems encountered when applying the three-parameter logistic model. Binary item tests containing 10 and 35 items were created, and Monte Carlo methods simulated the responses of 2,000 and 500 examinees. Item parameters were obtained using Logist 5.…
Descriptors: Computer Simulation, Difficulty Level, Guessing (Tests), Item Analysis
Robey, Randall R.; Barcikowski, Robert S. – 1986
This paper reports the results of a Monte Carlo investigation of Type I errors in the single group repeated measures design where multiple measures are collected from each observational unit at each measurement occasion. The Type I error of three multivariate tests were examined. These were the doubly multivariate F test, the multivariate mixed…
Descriptors: Analysis of Variance, Behavioral Science Research, Comparative Analysis, Hypothesis Testing
Tucker, Ledyard R.; And Others – 1986
A Monte Carlo study of five indices of dimensionality of binary items used a computer model that allowed sampling of both items and people. Five parameters were systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) nearly…
Descriptors: Correlation, Difficulty Level, Educational Research, Expectancy Tables
Hummel, Thomas J.; Johnston, Charles B. – 1986
This study investigated seven methods for analyzing multivariate group differences. Bonferroni t statistics, multivariate analysis of variance (MANOVA) followed by analysis of variance (ANOVA), and five other methods were studied using Monte Carlo methods. Methods were compared with respect to (1) experimentwise error rate; (2) power; (3) number…
Descriptors: Analysis of Variance, Comparative Analysis, Correlation, Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Caulkins, Jonathan P. – Journal of Policy Analysis and Management, 2002
In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…
Descriptors: Statistical Inference, Models, Policy Analysis, Sampling
Carlson, James E.; Spray, Judith A. – 1986
This paper discussed methods currently under study for use with multiple-response data. Besides using Bonferroni inequality methods to control type one error rate over a set of inferences involving multiple response data, a recently proposed methodology of plotting the p-values resulting from multiple significance tests was explored. Proficiency…
Descriptors: Cutting Scores, Data Analysis, Difficulty Level, Error of Measurement
Peer reviewed Peer reviewed
Maeshiro, Asatoshi – Journal of Economic Education, 1996
Rectifies the unsatisfactory textbook treatment of the finite-sample proprieties of estimators of regression models with a lagged dependent variable and autocorrelated disturbances. Maintains that the bias of the ordinary least squares estimator is determined by the dynamic and correlation effects. (MJP)
Descriptors: Causal Models, Correlation, Economics Education, Heuristics