Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 30 |
Descriptor
Source
Author
Publication Type
Education Level
Elementary Education | 14 |
Elementary Secondary Education | 12 |
Secondary Education | 8 |
Higher Education | 7 |
Grade 6 | 5 |
Grade 7 | 5 |
Grade 8 | 5 |
High Schools | 5 |
Early Childhood Education | 4 |
Primary Education | 4 |
Grade 5 | 3 |
More ▼ |
Audience
Teachers | 31 |
Students | 2 |
Practitioners | 1 |
Researchers | 1 |
Location
Greece | 1 |
Maryland (Baltimore) | 1 |
Pennsylvania | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pearl, Sandra; Bless, Elizabeth – Science and Children, 2021
The activity presented in this article is an engaging engineering challenge that has been conducted with third- through fifth-grade students in school classrooms and during after-school programs. This article describes the hands-on activity as appropriate for fifth graders that supports the "Next Generation Science Standards." This…
Descriptors: Elementary School Students, Engineering Education, Grade 3, Grade 4
Wesley A. Stroud – Journal of College Science Teaching, 2025
This paper highlights the design process and implementation for an "all majors" undergraduate course that allows students a chance to reconnect with the natural world. During this course students explore a wide range of biological and physical science based topics that seek to highlight human intervention and our impacts on the planet.…
Descriptors: Scientific Principles, Science Education, Honors Curriculum, Majors (Students)
Parks, Melissa – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2020
Maximizing classroom time to include meaningful content-based learning with fun engaging activities that simultaneously challenge and encourage students is a hallmark of a successful school day. This article shares one instructional approach that does a model eliciting activity (MEA). A MEA is a real-world, problem-based scenario framed around a…
Descriptors: Elementary School Science, Teaching Methods, Problem Based Learning, Letters (Correspondence)
Gumpert, Mindy; McConell, William – Science and Children, 2019
Students with disabilities spend the majority of their day in the general education classroom (U.S. Department of Education 2017). However, these students consistently underperform in science. This highlights the importance of using effective differentiated instruction. According to Mastropieri and colleagues (2006), differentiated instruction…
Descriptors: Students with Disabilities, Science Instruction, Individualized Instruction, Grade 3
Finelli, Cynthia J.; Nguyen, Kevin; DeMonbrun, Matthew; Borrego, Maura; Prince, Michael; Husman, Jennifer; Henderson, Charles; Shekhar, Prateek; Waters, Cynthia K. – Journal of College Science Teaching, 2018
In spite of considerable evidence of the effectiveness of active learning and other contemporary teaching methods, barriers to adoption of those methods, such as possible student resistance, continue to exist. This study addresses student resistance by analyzing data from 1,051 students who completed our Student Response to Instructional Practices…
Descriptors: Active Learning, Resistance (Psychology), Barriers, Student Attitudes
Bayley, Tiffany; Hurst, Ada – Decision Sciences Journal of Innovative Education, 2018
The design of balanced assembly lines, especially when considering workforce, material, and cycle time factors, is an important managerial decision-making activity in manufacturing firms. Numerous active learning activities are available to assist instructors in teaching assembly line balancing to students. While effective in improving student…
Descriptors: Active Learning, Blended Learning, Manufacturing, Manufacturing Industry
Lottero-Perdue, Pamela; Bolotin, Sonja; Benyameen, Ruth; Brock, Erin; Metzger, Ellen – Science and Children, 2015
Many preservice and practicing elementary teachers are familiar with the 5E learning cycle. This cycle provides a relatively simple, alliteratively memorable framework for teaching science in which lessons (or even entire units of instruction) consist of five distinct phases: Engagement, Exploration, Explanation, Elaboration/Extension (hereafter,…
Descriptors: Teaching Methods, Engineering, Design, Science Education
Concannon, James; Brown, Patrick L. – Science Activities: Classroom Projects and Curriculum Ideas, 2017
The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…
Descriptors: Secondary School Science, Science Curriculum, Curriculum Design, High School Students
Johnson, Carla C., Ed.; Walton, Janet B., Ed.; Peters-Burton, Erin E., Ed. – NSTA Press, 2019
What if you could challenge your second graders to design an outdoor STEM classroom with a butterfly garden, birdbath, and sundial? With this volume in the "STEM Road Map Curriculum Series," you can! "Investigating Environmental Changes" outlines a journey that will steer your students toward authentic problem solving while…
Descriptors: STEM Education, Elementary School Students, Teaching Methods, Outdoor Education
Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa – Science Activities: Classroom Projects and Curriculum Ideas, 2016
A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…
Descriptors: Biological Sciences, Elementary School Science, Grade 5, Engineering
Johnson, Carla C., Ed.; Walton, Janet B., Ed.; Peters-Burton, Erin E., Ed. – NSTA Press, 2018
What if you could challenge your 12th graders to understand car crashes in the context of physical forces, manufacturing challenges, government safety standards, and individual rights? With this volume in the "STEM Road Map Curriculum Series," you can! "Car Crashes" outlines a journey that will steer your students toward…
Descriptors: STEM Education, High School Students, Physics, Mathematics Instruction
Marrero, Meghan E.; Lam, Keira – Science Teacher, 2014
Studies show that overall seafood consumption in the United States is rising (Agriculture and Agri-Food Canada 2012). Other research estimates that as much as 40% of the seafood caught worldwide is discarded, while countless sharks, whales, dolphins, birds, sea turtles, and other animals are unintentionally killed or injured by fishing gear…
Descriptors: Ichthyology, Classroom Techniques, Models, High School Students
Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L. – Science Teacher, 2014
The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…
Descriptors: Engineering Technology, Student Interests, Science Interests, STEM Education
Prausnitz, Mark R.; Bommarius, Andreas S. – Chemical Engineering Education, 2011
We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…
Descriptors: Graduate Students, Student Projects, Active Learning, Chemical Engineering
Felix, Allison; Harris, John – Technology Teacher, 2010
The topic of alternative energy is not only relevant to a multitude of issues today, it is also an effective vehicle for developing instruction that applies across a variety of content disciplines and academic standards. Since many of the issues associated with alternative energy are open-ended, alternative energy also lends itself to…
Descriptors: Science Programs, Academic Standards, Grants, Science Instruction