NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 93 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Brandt, Gabriel S.; Novak, Walter R. P. – Biochemistry and Molecular Biology Education, 2021
Colleges and universities are learning to provide relevant virtual lab experiences for students due to the COVID-19 pandemic. Even schools attempting in-person instruction often need to utilize virtual experiences for students absent due to quarantine or illness. Much of biochemistry is amenable to molecular visualization and/or computational…
Descriptors: Science Laboratories, Computer Simulation, Science Instruction, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Rodrigues, H.; dos Santos, A. C.; Soares, A. – Physics Education, 2020
In this article, physical quantities related to the motion of a parachute system in the framework of Newton's law of mechanics guide an informal approach to the mathematical concept of function. Furthermore, a graphical simulator that enables visualization of the fall of object-parachutes system is presented. The article is aimed at students and…
Descriptors: Science Instruction, Physics, Equipment, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Plunkett, Kyle N. – Journal of Chemical Education, 2019
This paper provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I…
Descriptors: Computer Simulation, Educational Technology, Handheld Devices, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Moya, A. A. – Physics Education, 2018
The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…
Descriptors: Equipment, Simulation, Computer Software, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Christian, Wolfgang; Belloni, Mario; Sokolowska, Dagmara; Cox, Anne; Dancy, Melissa – Physics Education, 2020
Over the past 25 years, the Davidson College Physics Department has developed small computer programs called Physlets. These programs were written in Java and distributed as Java applets embedded in HTML pages. Physics teachers from around the world used Physlets to author interactive computer-based curricular materials for the teaching of…
Descriptors: Science Instruction, Physics, Teaching Methods, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Samsonau, Sergey V. – Physics Education, 2018
This paper presents a set of laboratory classes to be taught as a part of a 1 year calculus-based physics class. It is composed of 7 modules designed to bring together experiments and computer simulations. Each module uses both simulations and experiments to address a phenomenon under study, and lasts for 3 weeks (21 weeks total for the whole…
Descriptors: Physics, Science Instruction, Science Laboratories, Learning Modules
Peer reviewed Peer reviewed
Direct linkDirect link
Whiteley, Richard V., Jr. – Journal of Chemical Education, 2015
Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…
Descriptors: Science Instruction, Computer Simulation, Algebra, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E. – Biochemistry and Molecular Biology Education, 2010
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Descriptors: Science Instruction, Biochemistry, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
McKagan, S. B.; Perkins, K. K.; Wieman, C. E. – Physical Review Special Topics - Physics Education Research, 2008
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…
Descriptors: Teaching Methods, Science Instruction, Molecular Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Shalliker, R. A.; Kayillo, S.; Dennis, G. R. – Journal of Chemical Education, 2008
Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…
Descriptors: Chemistry, Science Instruction, Laboratory Experiments, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez – European Journal of Physics, 2008
This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…
Descriptors: Plastics, Monte Carlo Methods, Computer Simulation, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Sise, Omer; Manura, David J.; Dogan, Mevlut – European Journal of Physics, 2008
The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…
Descriptors: Computer Simulation, Optics, Science Instruction, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Fluke, Christopher J. – Astronomy Education Review, 2009
I report on a pilot study on the use of Google Maps to provide virtual field trips as a component of a wholly online graduate course on the history of astronomy. The Astronomical Tourist Web site (http://astronomy.swin.edu.au/sao/tourist), themed around the role that specific locations on Earth have contributed to the development of astronomical…
Descriptors: Computer Simulation, Field Trips, Astronomy, Web Sites
Peer reviewed Peer reviewed
Direct linkDirect link
Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S. – Journal of Chemical Education, 2008
Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…
Descriptors: Advanced Courses, Chemistry, Molecular Structure, Science Instruction
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7