NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Montana1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Plunkett, Kyle N. – Journal of Chemical Education, 2019
This paper provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I…
Descriptors: Computer Simulation, Educational Technology, Handheld Devices, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Jordheim, Lars Petter; Denuzie`re, Anne; Machon, Christelle; Zeinyeh, Wael – Journal of Chemical Education, 2021
The understanding of the basic principles of chromatography is of high importance for chemistry, pharmacy, and biology students. In this paper, we present a free web application which can be used as a teaching tool to introduce chromatography to undergraduate students, using one of the simplest chromatography models: the plate theory.
Descriptors: Chemistry, Laboratory Procedures, Computer Oriented Programs, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Vieyra, Rebecca; Vieyra, Chrystian; Jeanjacquot, Philippe; Marti, Arturo; Monteiro, Martín – Science Teacher, 2015
Mobile devices have become a popular form of education technology, but little attention has been paid to the use of their sensors for data collection and analysis. This article describes some of the benefits of using mobile devices this way and presents five challenges to help students overcome common misconceptions about force and motion. The…
Descriptors: Handheld Devices, Telecommunications, Science Laboratories, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Korzaan, Melinda; Lawrence, Cameron – Information Systems Education Journal, 2016
This lab exercise exposes students to Evernote, which is a powerful productivity application that has gained significant purchase in professional work environments. In many academic settings the introductory computer applications course has a specific focus on standard productivity applications such as MS Word and MS Excel. While ensuring fluency…
Descriptors: Productivity, Computer Oriented Programs, Introductory Courses, Computer Science Education
Peer reviewed Peer reviewed
Semeister, Joseph J., Jr.; Dowden, Edward – Science Teacher, 1989
To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)
Descriptors: Chemical Bonding, Chemistry, Computer Oriented Programs, Crystallography
Peer reviewed Peer reviewed
Conner, Wm. Curtis, Jr. – Chemical Engineering Education, 1990
Describes the conversion of a laboratory and change in course content in a chemical engineering curriculum. Lists laboratory experiments and computer programs used in the course. Discusses difficulties during the laboratory conversion and future plans for the course. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Snyder, William J., Hanyak, Michael E. – Chemical Engineering Education, 1985
Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)
Descriptors: Chemical Engineering, Computer Oriented Programs, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Lillie, Thomas S.; Yeager, Kirk – Journal of Chemical Education, 1989
Describes a laboratory experiment using AMPAC (a computer program) in conjunction with infrared spectroscopy. The experimental procedure and a list of questions for discussion are provided. Typical data are presented. (YP)
Descriptors: Chemical Analysis, Chemistry, College Science, Computer Assisted Instruction
Peer reviewed Peer reviewed
Amend, John R.; And Others – Journal of Computers in Mathematics and Science Teaching, 1989
Discusses how computers can be applied in the science laboratory. Describes the hardware and software associated with the laboratory interface system. Outlines a three-and-a-half-day workshop to train secondary science teachers to apply computer interfacing in their laboratories. Lists 5 references. (YP)
Descriptors: Chemistry, College Science, Computer Assisted Instruction, Computer Interfaces
Peer reviewed Peer reviewed
Tinari, Jr., Rocco; Rao, S. Sathyanarayan – CoED, 1985
Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)
Descriptors: Computer Oriented Programs, Computer Software, Engineering, Engineering Education
Peer reviewed Peer reviewed
Joseph, Babu; Elliott, David – Chemical Engineering Education, 1984
A laboratory course design to teach the principles of process data acquisition and control using digital computers was developed at Washington University. The structure of the laboratory and course are described. The course outline and list of experiments are included. (JN)
Descriptors: Chemical Engineering, Computer Oriented Programs, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Meuzelaar, Henk L. C.; And Others – Science, 1984
Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…
Descriptors: Biology, Chemical Analysis, Chemistry, College Science
Peer reviewed Peer reviewed
Dessy, Raymond E., Ed. – Analytical Chemistry, 1984
Discusses working implementations of artificial intelligence systems for chemical laboratory applications. They include expert systems for liquid chromatography, spectral analysis, instrument control of a totally computerized triple-quadrupole mass spectrometer, and the determination of the mineral constituents of a rock sample given the powder…
Descriptors: Artificial Intelligence, Chemical Analysis, Chemistry, College Science
Peer reviewed Peer reviewed
Nicklin, R. C. – Journal of College Science Teaching, 1985
Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…
Descriptors: College Science, Computer Oriented Programs, Higher Education, Laboratory Procedures
Peer reviewed Peer reviewed
Jorgenson, James W. – Science, 1984
Discusses recent developments in the instrumentation and practice of analytical scale operations. Emphasizes detection devices and procedures in gas chromatography, liquid chromatography, electrophoresis, supercritical fluid chromatography, and field-flow fractionation. (JN)
Descriptors: Biology, Chemical Analysis, Chemistry, Chromatography
Previous Page | Next Page »
Pages: 1  |  2