Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 67 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
Teachers | 93 |
Practitioners | 23 |
Administrators | 8 |
Students | 2 |
Policymakers | 1 |
Researchers | 1 |
Location
Australia | 1 |
Colorado | 1 |
Iowa | 1 |
Maryland (Baltimore) | 1 |
Missouri | 1 |
Netherlands | 1 |
North Carolina | 1 |
Ohio | 1 |
Oregon | 1 |
Puerto Rico | 1 |
Sweden | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Elissa Milto; Chelsea Andrews; Merredith Portsmore; Christopher Wright – Eye on Education, 2025
"Introducing Engineering to K-8 Students" will provide you with the tools you need to incorporate engineering design into your classroom. Rather than prescribing a specific curriculum to follow, this book will help you engage your students with hands-on, open-ended engineering design problems that can be easily integrated into your…
Descriptors: Engineering, Design, Middle School Teachers, Elementary School Teachers
Roy, George J.; Cunningham, Matthew; Rafanan, Kenneth – Mathematics Teacher: Learning and Teaching PK-12, 2023
In this article, the authors explain how they leveraged the popularity of the "Star Wars" franchise to introduce a task steeped in popular culture as a fun way to engage their students in investigating complex mathematics that have real-life connections to careers in toy design and engineering design in general. The authors share various…
Descriptors: Popular Culture, Films, Learner Engagement, Mathematics Instruction
Garcia, Marisa; Gentry, Christine; Jordan, Elissa; Nolan, Bekka; Cunningham, Christine M. – Science and Children, 2019
In engineering, teachers can push even the youngest learners to think critically and create something that reflects the function of the real thing. When children create, they often make a representation of something--a crayon-drawn stick-figure family or a butterfly life cycle represented with pasta--that is based on appearance. Their questions…
Descriptors: Kindergarten, Young Children, Early Childhood Education, Learning Activities
Bradley, Barbara A.; Thomas, Kelli; Bradley, A. Allen, Jr. – Science and Children, 2019
The "big bad wolf" chased the squealing children around the playground as they looked for a place to hide. Because Mr. Lòpez and Ms. Kim had introduced the work of engineers and the engineering design process into their unit on The Three Little Pigs, they knew their preschool students would choose a structure that could withstand any…
Descriptors: Preschool Education, Preschool Children, Engineering, Design
Waldrop, Angela; Corey, Caitlyn; Halfacre, Matthew; Hummell, Laura; Krantz, Dale; Gurganus, Jamie; Strimel, Greg J. – Technology and Engineering Teacher, 2019
This article showcases a lesson that employs a culturally situated design context to intentionally teach students about the engineering concepts involved in material selection and the application of dynamics. Students use their classroom time to work in groups addressing the issue of how to design athletic helmets to account for cultural attire,…
Descriptors: Design, Safety Equipment, Physical Activities, Health Promotion
Bartholomew, Scott R.; Zhang, Liwei; Weitlauf, John – Technology and Engineering Teacher, 2018
Computational thinking, programming, coding, and analytical thinking are high-demand skills in today's educational and occupational arenas (Wing, 2006 & 2014). In addition to these skills, students need the ability to think creatively, work collaboratively, and develop design solutions to complex problems to succeed in school and a…
Descriptors: Engineering, Design, Coding, Thinking Skills
McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip – Science and Children, 2017
This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…
Descriptors: Science Education, Engineering Education, Engineering, Design
Boys, Alexander J.; Walsh, Mark C. – Journal of Chemical Education, 2019
Elementary and middle school science curricula typically focus on generating an interest in science and engineering through the use of hands-on activities that demonstrate specific concepts. Laboratory activities designed in this manner often circumvent some of the main challenges that engineers and scientists face, namely balancing advantages and…
Descriptors: Elementary School Students, Middle School Students, Science Instruction, Science Laboratories
Briscoe, Michael – Science Teacher, 2019
FLEET is a free ship-design simulator that reaches students in their native environment--video games. It is also a physics simulator that applies content first learned through hands-on scientific investigations. Using FLEET, students design and use ships for various naval missions by mastering scientific concepts such as force, energy, and work,…
Descriptors: Video Games, Computer Simulation, Physics, Hands on Science
Turner, Ken L., Jr.; Hoffman, Adam R. – Journal of College Science Teaching, 2018
Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…
Descriptors: Science Instruction, College Science, Engineering, Design
Johnson, Carla C., Ed.; Walton, Janet B., Ed.; Peters-Burton, Erin E., Ed. – NSTA Press, 2019
What if you could challenge your second graders to design an outdoor STEM classroom with a butterfly garden, birdbath, and sundial? With this volume in the "STEM Road Map Curriculum Series," you can! "Investigating Environmental Changes" outlines a journey that will steer your students toward authentic problem solving while…
Descriptors: STEM Education, Elementary School Students, Teaching Methods, Outdoor Education
Sumrall, William J.; Sumrall, Kristen M. – Science Activities: Classroom Projects and Curriculum Ideas, 2018
The NGSS MS-ETS1 Engineering Design (1-4) is the focus of the article. Development of a challenging problem-based activity that is an improvement over the traditional egg drop competition is emphasized. Quantification of data collected and real-world relevance are two activity components that are viewed as improvements over the egg drop. The…
Descriptors: Engineering, Design, Problem Based Learning, Science Activities
Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill – Science and Children, 2018
Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…
Descriptors: Engineering, Design, Grade 5, Elementary School Science
King, Donna; English, Lyn – Teaching Science, 2016
Nationally and internationally there have been calls for a focus on STEM (science, technology, engineering and mathematics) teaching and learning in schools to prepare students for the many future careers in the STEM fields. One way to do this is through engineering activities that provide opportunities for integrating STEM to solve problems using…
Descriptors: STEM Education, Engineering, Grade 5, Foreign Countries
McPherson, Heather – Science Teacher, 2018
Students often confuse the functional differences between motion "transmission" and "transformation" systems. Students find it difficult to conceptualize differences between the specific systems. In this article, the author describes a technology and engineering unit that incorporates problem-based learning (PBL) to assist…
Descriptors: Science Instruction, Scientific Concepts, Motion, Problem Based Learning