Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 8 |
Descriptor
Graphs | 22 |
Motion | 22 |
Physics | 16 |
Teaching Methods | 11 |
Science Instruction | 10 |
Problem Solving | 7 |
Science Education | 7 |
Science Activities | 6 |
Scientific Concepts | 6 |
Secondary Education | 6 |
Secondary School Science | 6 |
More ▼ |
Source
Physics Teacher | 6 |
Science Teacher | 4 |
Mathematics Teacher | 3 |
Physics Education | 2 |
AAPT Press (BK) | 1 |
Mathematics Teaching in the… | 1 |
School Science and Mathematics | 1 |
Science Education Review | 1 |
Science and Children | 1 |
Author
Publication Type
Journal Articles | 19 |
Guides - Classroom - Teacher | 13 |
Reports - Descriptive | 11 |
Reports - Research | 2 |
Books | 1 |
Computer Programs | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Secondary Education | 2 |
Grade 12 | 1 |
Grade 3 | 1 |
High Schools | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Teachers | 22 |
Practitioners | 12 |
Researchers | 2 |
Location
Georgia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Frank, Brian W. – Physics Teacher, 2018
The goal of this paper is to illustrate different ways that cardsorting activities (or "card stacks") can be implemented in the introductory physics classroom, along with various tips and resources for getting started. My first attempt at developing a card stack came about from simply wanting to try out a fun way to change student…
Descriptors: Task Analysis, Problem Sets, Introductory Courses, Physics
Stoeckel, Marta R. – Science Teacher, 2018
Along-standing energy lab involves dropping bouncy balls and measuring their rebound heights on successive bounces. The lab demonstrates a situation in which the mechanical energy of a system is not conserved. Although students enjoyed the lab, the author wanted to deepen their thinking about energy, including the connections to motion, with a new…
Descriptors: Energy, Science Instruction, Scientific Concepts, Misconceptions
Choffin, Amy; Johnston, Laura – Science and Children, 2018
This article describes how two teachers implemented a 5E lesson in a third-grade classroom where the students had been working with forces/motion and investigating things that move like pendulums, swing sets, and various toys. The lesson was included as part of a larger unit on motion. The desired outcome for this lesson was for students to…
Descriptors: Grade 3, Elementary School Science, Science Education, Motion
Forringer, Ted – Physics Teacher, 2014
In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…
Descriptors: Inquiry, Nonmajors, Physics, Discovery Processes
Desbien, Dwain M. – Physics Teacher, 2008
In this age of the microcomputer-based lab (MBL), students are quite accustomed to looking at graphs of position, velocity, and acceleration versus time. A number of textbooks argue convincingly that the slope of the velocity graph gives the acceleration, the area under the velocity graph yields the displacement, and the area under the…
Descriptors: Textbooks, Motion, Graphs, Problem Solving
Blanchard, Margaret; Sharp, Jennifer; Grable, Lisa – Science Teacher, 2009
As part of the "Car Lab Project," students constructed rubber band cars, raced them, and worked through a number of automotive activities. The students engaged in this project certainly had fun, but they also used high-tech gear such as motion sensors and graphing calculators to gather data on the distance and time cars traveled and to generate…
Descriptors: National Standards, Engines, Graphing Calculators, Mathematics Instruction
Lovell, M.S. – Physics Education, 2007
This paper presents a derivation of all five Lagrange points by methods accessible to sixth-form students, and provides a further opportunity to match Newtonian gravity with centripetal force. The predictive powers of good scientific theories are also discussed with regard to the philosophy of science. Methods for calculating the positions of the…
Descriptors: Motion, Physics, Scientific Concepts, Science Instruction
Mader, Jan; Winn, Mary – AAPT Press (BK), 2008
This book is designed to be a quick and easy resource for anyone teaching physics for the first time. Written after extensive research, this book is filled with reliable labs, demos and activities that work well in the classroom. Also included are lesson plans, diagrams, and teacher notes for every activity. The book is not the end--it is just a…
Descriptors: Optics, Motion, Physics, Science Instruction

O'Connell, James – Physics Teacher, 1995
Explores strategies in the situation of a runner trying to evade a tackler on a football field. Enables the student to test intuitive strategies in a familiar situation using simple graphical and numerical methods or direct experimentation. (JRH)
Descriptors: Graphs, Motion, Physics, Problem Solving
Freudenrich, Craig – Science Teacher, 2005
Since 1995, astronomers have discovered over 100 known exoplanets--planets outside of the solar system--and determined their properties such as mass, orbital distance, size, and density. By using simple algebraic equations of physics, students can determine these properties as well. In this article, the author discusses an activity titled…
Descriptors: Teaching Methods, Motion, Grade 12, Astronomy

Beckmann, Charlene E.; Rozanski, Kara – Mathematics Teaching in the Middle School, 1999
Presents a lesson that uses a motion detector in order for students to experience the interplay between motion and its graphical representation of the slope. Focuses on the change in the appearance of the graph with regard to changing speed. (ASK)
Descriptors: Elementary Education, Graphing Calculators, Graphs, Junior High Schools

Stump, Daniel R. – Physics Teacher, 1995
Presents four examples of physics problems that can be solved with a graphing calculator. Problems included deal with motion, harmonic oscillations, sound waves, and blackbody radiation. (JRH)
Descriptors: Acoustics, Graphing Calculators, Graphs, Light

Tompson, C. W.; Wragg, J. L. – Physics Teacher, 1991
A quantitative application of magnetic braking performed with an air track is described. The experimental measurement of the position of the glider as a function of time is calculated. (KR)
Descriptors: Electricity, Graphs, Higher Education, Introductory Courses

Grant, A. Ruari – Physics Education, 1990
Described is a procedure for studying the trajectories of projectiles using ball bearings and aluminum foil. Trajectories were measured with and without the effects of air resistance. Multiflash photography was used to determine the flight paths of all objects. (KR)
Descriptors: Graphs, Gravity (Physics), Laboratories, Laboratory Equipment

Demana, Franklin; Waits, Bert K. – Mathematics Teacher, 1989
Discusses the use of graphing calculators for polar and parametric equations. Presents eight lines of the program for the graph of a parametric equation and 11 lines of the program for a graph of a polar equation. Illustrates the application of the programs for planetary motion and free-fall motion. (YP)
Descriptors: College Mathematics, Computer Uses in Education, Equations (Mathematics), Graphing Calculators
Previous Page | Next Page ยป
Pages: 1 | 2