NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)2
Education Level
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Tabor-Morris, A. E.; Froriep, K. A.; Briles, T. M.; McGuire, C. M. – Physics Education, 2009
Physics educators and researchers can be concerned with how students attain cognitive coherence: specifically, how students understand and intra-connect the whole of their knowledge of the "field of physics". Starting instead with the metaphor "city of physics", the implication of applying architectural concepts for the human acquisition of mental…
Descriptors: Urban Planning, Rhetoric, Figurative Language, Learning Strategies
Peer reviewed Peer reviewed
Helm, Hugh; And Others – Physics Education, 1985
Discusses: how thought experiments (TES) are presented and used in physics textbooks; how and why teachers include TES in their explanations; and what understandings students draw from TES. Indicates that TES are only one of a broad class of "acts of imagination" which are essential in physics education. (JN)
Descriptors: Cognitive Processes, Physics, Science Education, Science Experiments
Peer reviewed Peer reviewed
Nakaji, David M. – New Directions for Teaching and Learning, 1991
By carefully watching and listening to his students explain how they solved simple physics problems, one college instructor gained insight into how students visualize problems and developed techniques to help students change perspective more easily. Student metacognitive skills, student confidence, and student-teacher communication have also…
Descriptors: Classroom Research, Cognitive Processes, Higher Education, Instructional Improvement
Peer reviewed Peer reviewed
Padgett, Wendy T. – Physics Teacher, 1991
Provides a list of 33 problem-solving steps extracted from physics textbooks and arranged within the following 3 categories: setup, solution, and checks. (MDH)
Descriptors: Cognitive Processes, High Schools, Learning Strategies, Physics
Dufresne, Robert J. – 1988
One approach to the study of cognitive processes highlights the distinctions between expert and novice problem solvers. This approach attempts to discover how experts and novices differ in the way they organize, retain and use domain related knowledge. It appears to some that what is learned from expert-novice research can help teachers to teach…
Descriptors: Cognitive Development, Cognitive Processes, College Science, Higher Education
Dumas-Carre, Andree; Caillot, Michel – 1989
Most physics problem-solving studies provide data that indicate problem representation is different between experts and novices. This paper presents "cognitive aids" guiding the process of elaboration of a problem representation through intermediate representations. Intermediate means that the representation is situated somewhere between…
Descriptors: Cognitive Processes, Foreign Countries, Mechanics (Physics), Physics
Peer reviewed Peer reviewed
Grote, Michael G. – Physics Teacher, 1992
Describes the distributed practice technique to review course material. Results of a study to compare distributed practice to massed practice indicated that students using the distributed practice technique scored significantly higher when tested two months after practice was completed. (MDH)
Descriptors: Cognitive Processes, Homework, Instructional Effectiveness, Long Term Memory
Barowy, William; Lochhead, Jack – 1980
Preliminary results from a study of students' conceptions in introductory rotational physics are discussed. Analyses of data from problem solving interviews and written diagnostic tests provided evidence that many students had a poor qualitative understanding of torque. Even among students who answered questions correctly a percentage did so for…
Descriptors: Cognitive Processes, College Science, Higher Education, Interviews
Peer reviewed Peer reviewed
Mestre, Jose; Touger, Jerold – Physics Teacher, 1989
Describes the nature of cognitive research. Misconceptions research in mechanics and electricity are reviewed. Research results on expert/novice differences in knowledge organization and problem solving are reviewed. Implications for classroom teaching are discussed. Lists 34 references. (YP)
Descriptors: Cognitive Processes, Cognitive Psychology, College Science, Electricity
Peer reviewed Peer reviewed
Omasta, Eugene; Lunetta, Vincent N. – Science Education, 1988
Develops an experimental teaching method emphasizing the nature of functions including graphical representation in an introductory college physics course (mechanics). Examines the effects of this method on student's problem solving and attitude toward physics. (YP)
Descriptors: Calculators, Cognitive Processes, College Science, Functions (Mathematics)
Prendergast, Wilfred Francis – 1984
This study investigated problem solving skills in mechanics problems that required the use of diagrams. These skills were examined in two ways. First, the study examined student problem solving skills using solution scripts from the Western Australian Tertiary Admission Examination in physics. Solution attempts by students in the 1978 and 1979…
Descriptors: Cognitive Processes, Foreign Countries, Heuristics, Masters Theses
Murray, Tom; Woolf, Beverly – 1986
This paper is based on the idea that designing a knowledge representation for an intelligent physics computer tutoring system depends, in part, on the target behavior anticipated from the student. In addition, the document distinguishes between qualitative and quantitative competence in physics. These competencies are illustrated through questions…
Descriptors: Cognitive Processes, Cognitive Structures, College Science, Higher Education
Stead, Keith; Osborne, Roger – 1980
One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on students' thinking regarding their views on friction. Students (N=47) were…
Descriptors: Cognitive Processes, Comprehension, Concept Formation, Curriculum Development
Jones, Gail – 1990
This study compared the effects of cooperative learning groups to traditional instruction in remediating students' misconceptions about temperature. Students from grades 3, 4, and 5 in two rural elementary schools participated in the study. Students completed a pretest, a cognitive conflict laboratory activity and a posttest that measured…
Descriptors: Cognitive Dissonance, Cognitive Processes, Cognitive Structures, Concept Teaching
Previous Page | Next Page ยป
Pages: 1  |  2