NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 120 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher V. H.-H. Chen; Scott Banta – Chemical Engineering Education, 2023
As more chemical engineering students enter careers beyond the field, students need more guidance in applying their problem solving skills to a challenges beyond the plant or refinery. Since Fall 2019, we have implemented case-based learning across our Material and Energy Balances course to help students practice chemical engineering thinking as a…
Descriptors: Teaching Methods, Chemical Engineering, Engineering Education, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Robert J. Fisher – Chemical Engineering Education, 2025
Strategies are proposed that promote use of an Integrated Applied Mathematics (IAM) approach to enhance teaching of advanced problem-solving and analysis skills. Three scenarios of 1-dimensional transport processes are presented that support using Error Function analyses when considering short time/small penetration depths in finite geometries.…
Descriptors: Chemical Engineering, Mathematics, Problem Solving, Skill Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christopher Greer; Devon Eichfeld; Sara Sattarzadeh; Siu Ling Leung – Advances in Engineering Education, 2024
When engineering students are unable to evaluate the validity of their solutions, they are unprepared to solve complex, real-world engineering problems that require decomposition or knowledge transfer. A proper framework is key to successful implementation and can encourage more institutions to adopt problem-solving engineering labs. This paper…
Descriptors: Problem Solving, Engineering Education, Learning Laboratories, Scientific Concepts
Angi Stone-MacDonald; Kristen Wendell; Anne Douglass; Mary Lu Love; Amanda Wiehe Lopes – Brookes Publishing Company, 2024
Boost young children's problem-solving skills and set them up for long-term success with the second edition of this practical guidebook! Enhanced with new lessons and timely topics--including equity and the use of makerspaces--this book will help you get all children ready for kindergarten by teaching them basic practices of engineering design and…
Descriptors: Young Children, Infants, Toddlers, Preschool Children
Peer reviewed Peer reviewed
Direct linkDirect link
Stout, Jody; Rouse, Rob; Malesic, Jonathan; Krummeck, Katie – Science and Children, 2022
Design thinking--a human-centered approach to problem solving--is a process by which K-12 teachers engage students in solving relevant issues that occur in their schools. In this article, the authors describe a project in which fourth-graders used design thinking to solve an unexpected issue related to a much-anticipated class project. The project…
Descriptors: Grade 4, Elementary School Students, Design, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Martín Erro, Alfonso; Nuere Menéndez-Pidal, Silvia; Díaz-Obregón Cruzado, Raúl; Acitores Suz, Adela – Journal of Visual Literacy, 2022
Visual literacy is essential for engineers. Technological professions have important visual characterization, both in the transmission of information and problem-solving. This means that future engineers must be proficient at communicating, thinking, and learning visually. However, engineering curricula takes partially the need to have visually…
Descriptors: Visual Literacy, Competence, Engineering Education, Competency Based Education
Peer reviewed Peer reviewed
Direct linkDirect link
Bradley, Barbara A.; Thomas, Kelli; Bradley, A. Allen, Jr. – Science and Children, 2019
The "big bad wolf" chased the squealing children around the playground as they looked for a place to hide. Because Mr. Lòpez and Ms. Kim had introduced the work of engineers and the engineering design process into their unit on The Three Little Pigs, they knew their preschool students would choose a structure that could withstand any…
Descriptors: Preschool Education, Preschool Children, Engineering, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Wesley A. Stroud – Journal of College Science Teaching, 2025
This paper highlights the design process and implementation for an "all majors" undergraduate course that allows students a chance to reconnect with the natural world. During this course students explore a wide range of biological and physical science based topics that seek to highlight human intervention and our impacts on the planet.…
Descriptors: Scientific Principles, Science Education, Honors Curriculum, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund – Middle School Journal, 2017
Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…
Descriptors: STEM Education, Middle School Students, Middle School Teachers, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Joss, Lisa; Müller, Erich A. – Journal of Chemical Education, 2019
Recent advances in computer hardware and algorithms are spawning an explosive growth in the use of computer-based systems aimed at analyzing and ultimately correlating large amounts of experimental and synthetic data. As these machine learning tools become more widespread, it is becoming imperative that scientists and researchers become familiar…
Descriptors: Science Instruction, Science Laboratories, Chemical Engineering, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Sumrall, William J.; Sumrall, Kristen M. – Science Activities: Classroom Projects and Curriculum Ideas, 2018
The NGSS MS-ETS1 Engineering Design (1-4) is the focus of the article. Development of a challenging problem-based activity that is an improvement over the traditional egg drop competition is emphasized. Quantification of data collected and real-world relevance are two activity components that are viewed as improvements over the egg drop. The…
Descriptors: Engineering, Design, Problem Based Learning, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Eunhye; Newman, Christine; Lastova, Mark; Bosman, Timothy; Strimel, Greg J. – Technology and Engineering Teacher, 2018
This article presents a culturally situated and socially relevant lesson for intentionally teaching secondary students the fundamental engineering concepts related to Problem Framing and Project Management. This lesson includes: (1) class discussions to engage students in a socially relevant problem (food waste and sustainability) within a…
Descriptors: Secondary School Students, Social Problems, Food, Problem Solving
Texley, Juliana; Ruud, Ruth M. – Redleaf Press, 2018
"Teaching STEM Literacy" is comprised of ready-made, open-ended lessons reviewed and tested by teachers, which help educators integrate STEM learning into the early childhood classroom. Lessons are linked to the Next Generation Science Standards, and encourage creative ideas for three-dimensional STEM learning that are developmentally…
Descriptors: STEM Education, Early Childhood Education, Skill Development, Inquiry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yuhyun Choi; Euisuk Sung; Seungwon Lee – Technology and Engineering Teacher, 2022
The International Technology and Engineering Educators Association's (ITEEA's) "Standards for Technological and Engineering Literacy" ("STEL") describes design thinking as an approach that allows students and educators to integrate other content areas by considering relevant contextual information to guide design and making…
Descriptors: Design, Engineering Education, Thinking Skills, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Perry, Anthony; Estabrooks, Leigh – Science Teacher, 2019
The "Next Generation Science Standards" ("NGSS") emphasize integrating engineering design into the science classroom (NGSS Lead States 2013). Inventing is an authentic and relevant classroom approach, regardless of content area, located at one end of a design continuum opposite from routine problem solving. Invention, at the…
Descriptors: Intellectual Property, Problem Solving, Learner Engagement, Natural Disasters
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8