Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 15 |
Descriptor
Source
Author
Cutter, Mary Ann G. | 2 |
Drexler, Edward | 2 |
McCullough, Laurence B. | 2 |
McInerney, Joseph D. | 2 |
Murray, Jeffrey C. | 2 |
Worthy, Ward | 2 |
Zola, John | 2 |
Adams, J. Alan | 1 |
Armstrong, Kerri | 1 |
Bakos, Jack D., Jr. | 1 |
Barrier, Lynn P. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Teachers | 64 |
Practitioners | 49 |
Administrators | 13 |
Policymakers | 5 |
Researchers | 3 |
Students | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund – Middle School Journal, 2017
Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…
Descriptors: STEM Education, Middle School Students, Middle School Teachers, Interdisciplinary Approach
Krajcik, Joe – Science and Children, 2015
Science teaching and learning in the United States are at a pivotal point. "A Framework for K-12 Science Education" (NRC 2012b) and the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013) shift science educators' focus from simply teaching science ideas to helping students figure out phenomena and…
Descriptors: Science Instruction, Science Education, Science Curriculum, Teaching Methods
Boesdorfer, Sarah; Greenhalgh, Scott – Science Teacher, 2014
The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…
Descriptors: Science Curriculum, Science Instruction, Science Teachers, Engineering
Macalalag, Augusto, Jr.; Johnson, Barbara; Johnson, Joseph – Science and Children, 2018
Engaging students in designing, testing, and revising engineering models using mathematical representation of data from scientific investigations helps them embody the science and engineering practices highlighted in the "Next Generation Science Standards" (NGSS Lead States, 2013). The practices of modeling, conducting failure analysis,…
Descriptors: STEM Education, Standards, Design, Engineering Education
Schnittka, Christine; Richards, Larry – Science Teacher, 2016
Solar energy is clean, free, and abundant worldwide. The challenge, however, is to convert it to useful forms that can reduce our reliance on fossil fuels. This article presents an activity for physical science classes in which students learn firsthand how solar energy can be used to produce electricity specifically for transportation. The…
Descriptors: Energy, Fuels, Science Instruction, Teaching Methods
National Academies Press, 2012
The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…
Descriptors: Engineering, Engineering Technology, Engineering Education, Undergraduate Study
Flannagan, Jenny Sue; Sawyer, Margaret – Science and Children, 2015
In this article the authors describe what they call their "Snapshots of Science" program. These mini-lessons of science are taught once a week to all students in the school library. Over the last two years, they have been working to extend the experiences students have in their science classroom into the library. Each week, students…
Descriptors: Science Instruction, Grade 4, Science Curriculum, School Libraries
Concannon, James; Brown, Patrick L. – Science Activities: Classroom Projects and Curriculum Ideas, 2017
The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…
Descriptors: Secondary School Science, Science Curriculum, Curriculum Design, High School Students
Razzouk, Rabieh; Dyehouse, Melissa; Santone, Adam; Carr, Ronald – Science Teacher, 2014
Teachers typically teach subjects separately, but integrated science, technology, engineering, and mathematics (STEM) curriculums that focus on real-world practices are gaining momentum (NAE and NRC 2009). Before release of the "Next Generation of Science Standards" ("NGSS") (NGSS Lead States 2013), 36 states already had a…
Descriptors: Plants (Botany), Pollution, Science Instruction, Standards
Carlone, Heidi; Smithenry, Dennis – Science and Children, 2014
Imagine two fourth-grade classes. Both contain students of comparable demographics and highly respected teachers each with four to five years of experience. Both classes engage in science curricula that emphasize science and engineering practices as outlined in the "Next Generation Science Standards" (NGSS Lead States 2013). Both classes…
Descriptors: Elementary School Students, Elementary School Teachers, Science Curriculum, Elementary School Curriculum
Riechert, Susan E.; Post, Brian K. – American Biology Teacher, 2010
The national Science, Technology, Engineering, and Math (STEM) Education Initiative favors a curriculum shift from the compartmentalization of math and science classes into discrete subject areas to an integrated, multidisciplinary experience. Many states are currently implementing programs in high schools that provide greater integration of math,…
Descriptors: Science Activities, Program Evaluation, Biology, Human Body
National Academies Press, 2012
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S.…
Descriptors: Science Education, Science Instruction, Elementary Secondary Education, Alignment (Education)
O'Connor, Kim C. – Chemical Engineering Education, 2007
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Descriptors: Introductory Courses, Biotechnology, Chemical Engineering, Science Instruction
Bakos, Jack D., Jr. – Engineering Education, 1990
Develops a programed approach for developing design projects. Describes the initiation, design experiences, final report, and problems of the approach. (YP)
Descriptors: Civil Engineering, College Science, Course Content, Course Descriptions

Karayanakis, Nicholas M. – Engineering Design Graphics Journal, 1988
This paper discusses the mechanization of mathematical functions by means of analog electronics. Five different approaches are described which demonstrate the versatility of the analog technique by using parabolic function, exponential decay technique, projectile trajectory, trigonometry, and piecewise linear approximation techniques. (YP)
Descriptors: College Science, Electronics, Engineering, Engineering Education