NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers21
Practitioners1
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, Andreas; Splith, Tobias; Stallmach, Frank – Physics Teacher, 2021
Implementing smartphones with their internal sensors into physics experiments represents a modern, attractive, and authentic approach to improve students' conceptual understanding of physics. In such experiments, smartphones often serve as objects with physical properties and as digital measurement devices to record, display, and analyze…
Descriptors: Telecommunications, Handheld Devices, Technology Uses in Education, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Balaton, Mariana; Cavadas, Jorge; Carvalho, Paulo Simeão; Lima, J. J. G. – Physics Education, 2021
Experimental teaching is essential for a good understanding of science, especially on Physics. Practical activities play an important role for engaging students with science, mainly when they interact directly with equipment, collect experimental data with computers and/or use interactive software for data analysis. In this work, we present the…
Descriptors: Science Instruction, Physics, Robotics, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Odom, Arthur L.; Bell, Clare V. – Science Teacher, 2019
In 1827, Robert Brown noticed pollen suspended in water bouncing around erratically. It wasn't until 1905 that Albert Einstein provided an acceptable explanation of the phenomenon (Kac 1947): Brownian motion is the random movement of particles (e.g., pollen) in a fluid (liquid or gas) as a result of collisions with atoms and molecules. Movement of…
Descriptors: Science Instruction, Molecular Structure, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hahn, Marcelo Dumas; Cruz, Frederico Alan de Oliveira; Carvalho, Paulo Simeão – Physics Teacher, 2019
When sound waves are taught at the secondary level, the speed of propagation of sound is one of the most important characteristics to be analyzed. However, it is very common in textbooks that the value of sound speed in air is considered constant regardless of the experimental conditions. The great question is that since sound is a mechanical…
Descriptors: Measurement Techniques, Motion, Acoustics, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Presser, Ashley Lewis; Dominguez, Ximena; Goldstein, Marion; Vidiksis, Regan; Kamdar, Danae – Science and Children, 2019
Investigating real-world phenomena in a playful, exploratory setting is a natural process for young children. Teachers can capitalize on children's curiosity to foster their understanding of science ideas and their engagement in science practices, such as predicting, experimenting, observing, comparing, and contrasting. Force and motion…
Descriptors: Preschool Children, Preschool Education, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Timková, V.; Ješková, Z. – Physics Teacher, 2017
Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways,…
Descriptors: Science Instruction, Physics, Motion, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Erol, M.; Çolak, I. Ö. – Physics Education, 2018
This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an…
Descriptors: Physics, Science Education, Scientific Concepts, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
de Jesus, V. L. B.; Pérez, C. A. C.; de Oliveira, A. L.; Sasaki, D. G. G. – Physics Education, 2019
Currently, the number of smartphones with an embedded gyroscope sensor has been increasing due games whose performance relies on 3D augmented reality. In general, teaching papers on the gyroscope sensor address very simple spatial configuration, where the fixed rotation axis coincides to the z-axis of the smartphone. This work presents five…
Descriptors: Science Instruction, Scientific Concepts, Motion, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Choffin, Amy; Johnston, Laura – Science and Children, 2018
This article describes how two teachers implemented a 5E lesson in a third-grade classroom where the students had been working with forces/motion and investigating things that move like pendulums, swing sets, and various toys. The lesson was included as part of a larger unit on motion. The desired outcome for this lesson was for students to…
Descriptors: Grade 3, Elementary School Science, Science Education, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Samsonau, Sergey V. – Physics Education, 2018
This paper presents a set of laboratory classes to be taught as a part of a 1 year calculus-based physics class. It is composed of 7 modules designed to bring together experiments and computer simulations. Each module uses both simulations and experiments to address a phenomenon under study, and lasts for 3 weeks (21 weeks total for the whole…
Descriptors: Physics, Science Instruction, Science Laboratories, Learning Modules
Peer reviewed Peer reviewed
Direct linkDirect link
Pleasants, Jacob – Science Teacher, 2018
In classroom science laboratories, unlike a real science laboratory, the teacher can guide students away from potential dead ends and toward data that are most likely to result in accurate conclusions. Sometimes, though, allowing students to pursue dead ends and to collect "bad" data can provide especially rich learning opportunities.…
Descriptors: Science Instruction, Science Experiments, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Marianne; Jeffery, Tonya D. – Science Activities: Classroom Projects and Curriculum Ideas, 2016
Patterns of Change: Forces and Motion is an integrated science lesson that uses the 5E lesson cycle to tie together science with language arts, mathematics, literature, technology, engineering and social studies in an engaging format applicable for young learners. This lesson has been uniquely designed for the purpose of providing elementary…
Descriptors: Science Instruction, Physics, Scientific Concepts, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Vieyra, Rebecca; Vieyra, Chrystian; Jeanjacquot, Philippe; Marti, Arturo; Monteiro, Martín – Science Teacher, 2015
Mobile devices have become a popular form of education technology, but little attention has been paid to the use of their sensors for data collection and analysis. This article describes some of the benefits of using mobile devices this way and presents five challenges to help students overcome common misconceptions about force and motion. The…
Descriptors: Handheld Devices, Telecommunications, Science Laboratories, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
English, Vincent; Crotty, Yvonne; Farren, Margaret – Digital Education Review, 2015
Inspiring Science Education (ISE) (http://www.inspiringscience.eu/) is an EU funded initiative that seeks to further the use of inquiry-based science learning (IBSL) through the medium of ICT in the classroom. The Basketball Shot is a scenario (lesson plan) that involves the use of video capture to help the student investigate the concepts of…
Descriptors: Active Learning, Inquiry, Motion, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Cogger, Steve – Science Teacher, 2015
The traditional Run the Football Field physics activity--in which students are timed as they move at different speeds on a football field to investigate displacement and velocity--has been updated for the 21st century. Nowadays, GPS-enabled tablets and smartphones replace the stopwatches and yard markers of the past, allowing students to collect…
Descriptors: Science Instruction, Physics, Computer Oriented Programs, Technology Uses in Education
Previous Page | Next Page »
Pages: 1  |  2