NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Crossley, Scott A.; Kim, Minkyung; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2019
Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However,…
Descriptors: Automation, Writing Evaluation, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dascalu, Mihai; Jacovina, Matthew E.; Soto, Christian M.; Allen, Laura K.; Dai, Jianmin; Guerrero, Tricia A.; McNamara, Danielle S. – Grantee Submission, 2017
iSTART is a web-based reading comprehension tutor. A recent translation of iSTART from English to Spanish has made the system available to a new audience. In this paper, we outline several challenges that arose during the development process, specifically focusing on the algorithms that drive the feedback. Several iSTART activities encourage…
Descriptors: Spanish, Reading Comprehension, Natural Language Processing, Intelligent Tutoring Systems
Allen, Laura K. – International Educational Data Mining Society, 2015
The purpose of intelligent tutoring systems is to provide students with personalized instruction and feedback. The focus of these systems typically rests in the adaptability of the feedback provided to students, which relies on automated assessments of performance in the system. A large focus of my previous work has been to determine how natural…
Descriptors: Intelligent Tutoring Systems, Individual Differences, Natural Language Processing, Student Evaluation