Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Classification | 5 |
Computer Science Education | 5 |
Programming | 5 |
Data Analysis | 3 |
Models | 3 |
Programming Languages | 3 |
Teaching Methods | 3 |
Academic Achievement | 2 |
Coding | 2 |
College Students | 2 |
Evaluation Methods | 2 |
More ▼ |
Author
Barnes, Tiffany | 5 |
Chi, Min | 3 |
Gitinabard, Niki | 2 |
Heckman, Sarah | 2 |
Mao, Ye | 2 |
Price, Thomas W. | 2 |
Shi, Yang | 2 |
Gao, Zhikai | 1 |
Khoshnevisan, Farzaneh | 1 |
Lynch, Collin | 1 |
Lynch, Collin F. | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Speeches/Meeting Papers | 4 |
Journal Articles | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Audience
Location
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gitinabard, Niki; Gao, Zhikai; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin F. – Journal of Educational Data Mining, 2023
Few studies have analyzed students' teamwork (pairwork) habits in programming projects due to the challenges and high cost of analyzing complex, long-term collaborative processes. In this work, we analyze student teamwork data collected from the GitHub platform with the goal of identifying specific pair teamwork styles. This analysis builds on an…
Descriptors: Cooperative Learning, Computer Science Education, Programming, Student Projects
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming