Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 12 |
Descriptor
Source
Psychometrika | 11 |
Structural Equation Modeling:… | 7 |
Multivariate Behavioral… | 6 |
Structural Equation Modeling | 4 |
Journal of Educational and… | 2 |
Author
Lee, Sik-Yum | 30 |
Song, Xin-Yuan | 18 |
Xia, Ye-Mao | 3 |
Zhu, Hong-Tu | 3 |
Hser, Yih-Ing | 2 |
Tang, Nian-Sheng | 2 |
Cai, Jing-Heng | 1 |
Chen, Fei | 1 |
Hao, Yua-Tao | 1 |
Lee, John C. K. | 1 |
Lu, Bin | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 13 |
Reports - Evaluative | 11 |
Reports - Descriptive | 6 |
Education Level
Audience
Location
Hong Kong | 1 |
Philippines | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Analysis, Computation
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Descriptors: Structural Equation Models, Longitudinal Studies, Bayesian Statistics, Drug Use
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Descriptors: Bayesian Statistics, Structural Equation Models, Computer Software, Computation
Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum – Psychometrika, 2009
Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…
Descriptors: Structural Equation Models, Simulation, Statistical Analysis, Models
Song, Xin-Yuan; Lee, Sik-Yum; Hser, Yih-Ing – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly…
Descriptors: Medical Research, Structural Equation Models, Longitudinal Studies, Multivariate Analysis
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2008
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Descriptors: Structural Equation Models, Bayesian Statistics, Evaluation Methods, Evaluation Research
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…
Descriptors: Psychological Studies, Life Satisfaction, Job Satisfaction, Structural Equation Models
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng – Structural Equation Modeling: A Multidisciplinary Journal, 2007
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Descriptors: Interaction, Structural Equation Models, Bayesian Statistics, Computation
Lee, Sik-Yum; Tang, Nian-Sheng – Psychometrika, 2004
By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…
Descriptors: Structural Equation Models, Influences, Simulation, Psychometrics

Lee, Sik-Yum; Shi, Jian-Qing – Structural Equation Modeling, 2000
Extends the LISREL model to incorporate fixed covariates at both the measurement and the structural equations of the model, establishing a Bayesian procedure with conjugate type prior distributions. Illustrates the efficiency of the algorithm and presents a goodness of fit statistic for assessing the proposed model. (SLD)
Descriptors: Bayesian Statistics, Goodness of Fit, Structural Equation Models

Lee, Sik-Yum; Song, Xin-Yuan – Psychometrika, 2003
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
Descriptors: Bayesian Statistics, Comparative Analysis, Sampling, Structural Equation Models
Lee, Sik-Yum; Song, Xin-Yuan; Skevington, Suzanne; Hao, Yua-Tao – Structural Equation Modeling, 2005
Quality of life (QOL) has become an important concept for health care. As QOL is a multidimensional concept that is best evaluated by a number of latent constructs, it is well recognized that latent variable models, such as exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are useful tools for analyzing QOL data. Recently,…
Descriptors: Questionnaires, Quality of Life, Factor Analysis, Structural Equation Models
Lee, Sik-Yum – Psychometrika, 2006
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Descriptors: Mathematics, Structural Equation Models, Bayesian Statistics, Goodness of Fit

Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling, 2002
Developed a Bayesian approach for a general multigroup nonlinear factor analysis model that simultaneously obtains joint Bayesian estimates of the factor scores and the structural parameters subjected to some constraints across different groups. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Factor Analysis, Scores
Lee, Sik-Yum; Song, Xin Yuan; Poon, Wai-Yin – Multivariate Behavioral Research, 2004
Various approaches using the maximum likelihood (ML) option of the LISREL program and products of indicators have been proposed to analyze structural equation models with non-linear latent effects on the basis of Kenny and Judd's formulation. Recently, some methods based on the Bayesian approach and the exact ML approaches have been developed.…
Descriptors: Comparative Analysis, Structural Equation Models, Statistical Analysis, Evaluation Methods
Previous Page | Next Page ยป
Pages: 1 | 2