NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wan, Qian; Crossley, Scott; Banawan, Michelle; Balyan, Renu; Tian, Yu; McNamara, Danielle; Allen, Laura – International Educational Data Mining Society, 2021
The current study explores the ability to predict argumentative claims in structurally-annotated student essays to gain insights into the role of argumentation structure in the quality of persuasive writing. Our annotation scheme specified six types of argumentative components based on the well-established Toulmin's model of argumentation. We…
Descriptors: Essays, Persuasive Discourse, Automation, Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wan, Qian; Crossley, Scott; Allen, Laura; McNamara, Danielle – Grantee Submission, 2020
In this paper, we extracted content-based and structure-based features of text to predict human annotations for claims and nonclaims in argumentative essays. We compared Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support Vector Classification, Random Forest, and Neural Networks to train classification models. Random…
Descriptors: Persuasive Discourse, Essays, Writing Evaluation, Natural Language Processing