NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Crossley, Scott A.; Kyle, Kristopher; Allen, Laura K.; Guo, Liang; McNamara, Danielle S. – Grantee Submission, 2014
This study investigates the potential for linguistic microfeatures related to length, complexity, cohesion, relevance, topic, and rhetorical style to predict L2 writing proficiency. Computational indices were calculated by two automated text analysis tools (Coh- Metrix and the Writing Assessment Tool) and used to predict human essay ratings in a…
Descriptors: Computational Linguistics, Essays, Scoring, Writing Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott A.; Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Journal of Educational Data Mining, 2016
This study investigates a novel approach to automatically assessing essay quality that combines natural language processing approaches that assess text features with approaches that assess individual differences in writers such as demographic information, standardized test scores, and survey results. The results demonstrate that combining text…
Descriptors: Essays, Scoring, Writing Evaluation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott A.; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2014
The study applied the Multi-Dimensional analysis used by Biber (1988) to examine the functional parameters of essays. Co-occurrence patterns were identified within an essay corpus (n=1529) using a linguistic indices provided by Co-Metrix. These patterns were used to identify essay groups that shared features based upon situational parameters.…
Descriptors: Essays, Writing (Composition), Computational Linguistics, Cues