NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ747794
Record Type: Journal
Publication Date: 2006-Jun
Pages: 15
Abstractor: Author
ISBN: N/A
ISSN: ISSN-1082-989X
EISSN: N/A
Available Date: N/A
Profiling Local Optima in K-Means Clustering: Developing a Diagnostic Technique
Steinley, Douglas
Psychological Methods, v11 n2 p178-192 Jun 2006
Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate distributions of clusters; and (e) various multidimensional data structures. The results are evaluated in terms of the Hubert-Arabie adjusted Rand index, and several observations concerning the performance of K-means clustering are made. Finally, the article concludes with the proposal of a diagnostic technique indicating when the partitioning given by a K-means cluster analysis can be trusted. By combining the information from several observable characteristics of the data (number of clusters, number of variables, sample size, etc.) with the prevalence of unique local optima in several thousand implementations of the K-means algorithm, the author provides a method capable of guiding key data-analysis decisions.
American Psychological Association. Journals Department, 750 First Street NE, Washington, DC 20002-4242. Tel: 800-374-2721; Tel: 202-336-5510; Fax: 202-336-5502; e-mail: order@apa.org; Web site: http://www.apa.org/publications
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A